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Quick facts and notations

Fourier transform:

1̂A(x)=
∑
a∈A

e2πi〈a,x〉/n, A⊆Z2
n

Zero set:
Z (1̂A)= {x ∈Z2

n : 1̂A(x)= 0}

Di�erence set:
∆A= {a−a′ : a,a′ ∈A, a ̸= a′}
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Quick facts and notations

(A,S) is a spectral pair on Z2
n ⇔

{
|A| = |S |
∆S ⊆Z (1̂A)

(A,B) is a tiling pair on Z2
n ⇔

{
|A| · |B | = n2

∆Z2
n ⊆Z (1̂A)∪Z (1̂B)
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Appetizer

Let H be a maximal cyclic subgroup in Z2
n generated by h, then

1̂H(x)=
n−1∑
k=0

e2πik〈h,x〉/n =
{
0 if 〈h,x〉 ̸= 0,

n if 〈h,x〉 = 0,

which means
Z (1̂H)= {x ∈Z2

n : 〈h,x〉 ̸= 0}.

Orthogonal set:

A⊥ = {x ∈Z2
n : 〈a,x〉 = 0, ∀a ∈A}.
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Poisson summation formula (maximal cyclic subgroups)

If H is a maximal cyclic subgroup, then

Z (1̂H)=Z2
n \H⊥

More precisely
1̂H = |H | ·1H⊥

Spoiler: This actually holds for all subgroups.
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Examples

◦ ◦ ◦ ◦ ◦
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◦
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How about such sets?

◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦

◦◦ ◦ ◦ ◦ ◦
◦
◦

◦
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Basic observation

Given some A, let's consider whether x = (k ,0) is in Z (1̂A):

1̂A(x)=
∑

(a1,a2)∈A
e2πi(a1·k+a2·0)/n = ∑

(a1,a2)∈A
e2πia1·k/n

(1) If A1 is the multiset obtained by applying (a1,a2) 7→ (a1,0) on
A, then 1̂A(x)= 1̂A1

(x) for x = (k ,0).

(2) We may view
∑

(a1,a2)∈A e
2πia1·k/n as the univariate polynomial

p(z)= ∑
(a1,a2)∈A

za1

evaluated at z = e2πik/n.
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The idea

Given some A and x , to determine whether x ∈Z (1̂A), we �nd
some x ′,y ′ so that x ∈ 〈x ′〉, x ′ ⊥ y ′, and x ′,y ′ generates Z2

n.

x ′,y ′ is a pair of �orthogonal Euclidean basis�, and if x ′ = (x1,x2),
then y ′ = (−x2,x1).

Write every element a ∈A into linear combinations of x ′,y ′, then
repeating the same procedure we obtain

(1) 1̂A(x) depends only on the projection of A into 〈x ′〉;

(2) 1̂A(x) can be viewed as a univariate polynomial evaluated at
z = e2πik/n where k is the value so that x = kx ′.
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Facts: disjointness of di�erence sets

Fact 1:

A+B =A⊕B ⇔ ∆A∩∆B =;

De�ne an equivalence relation in �nite Abelian groups: h∼ h′ if
h,h′ generate the same cyclic subgroup.

Fact 2: Let E be an arbitrary equivalence class under ∼, then
∆A∩E and ∆B ∩E can not be both non-empty.

Reason(dilation trick): If gcd(m, |A|)= 1 and (A,B) is a tiling pair,
then (mA,B) is still a tiling pair.
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Equivalence classes
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Facts: a representation of Zpk

Expand every element of Zpk in base p, then each element can be
represented by a k-digit base p number.

Fact: Subgroups have common trailing 0s:

A subgroup of size pt consists of all numbers whose last k − t digits
are 0, and its generators are of the form:

d1 . . .dt−1x 0 . . . . . .0︸ ︷︷ ︸
k−t digits

,

with x ̸= 0 and d1, . . . ,dt−1 arbitrary.
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Quick facts and notations

Let
C ′ = {0 . . . . . .0︸ ︷︷ ︸

t−1 digits

x 0 . . . . . .0︸ ︷︷ ︸
k−t digits

: x ∈Zp},

then |C ′| = p, and both C ′,∆C ′ belong to the same equivalence
class.

Let E be an equivalence class in Z2
pk , and h ∈E .

E generates a cyclic group of some prime power order, hence if

E ′ = {0,h, . . . ,(p−1)h},

then |E ′| = p, and both E ′,∆E ′ ⊆E .
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Quick facts

All elements in a given equivalence class are simultaneously
annihilated.

Each equivalence class E contains an size p subset E ′ whose
di�erence set is still in the class.

We will construct sets of form E ′
1⊕E ′

2⊕ . . .⊕E ′
m as spectra for

tilings sets or tiling complements for spectral sets in Z2
pk .
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Some immediate consequences

Lemma
If h ∈Z (1̂A), then 1̂A annihilates the whole equivalence class of h.

Lemma
If h ∈Z (1̂A) and ord(h)= pk , then p divides |A|.
Proposition

If A⊂Z2
pk is a tiling set with |A| = p or p2k−1, then A is spectral.

Proposition

If A⊂Z2
pk is a spectral set with |A| ≥ p2k−1, then A is tiling.

Theorem
Tiling sets and spectral sets coincide in Z2

p.
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T⇒S: |A| = p in Z2

pk

Let (A,B) be a tiling pair in Z2
pk with |A| = p.

Z (1̂A) ̸= ; must hold, otherwise Z (1̂B) would contain the whole
∆Z2

pk .

There is some equivalence class E with E ⊆Z (1̂A), and E ′ is a
spectrum of A.
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S⇒T: |A| ≥ p2k−1 in Z2

pk

Let (A,S) be a spectral pair in Z2
pk with |A| ≥ p2k−1.

There must be some equivalence class E that is disjoint with ∆A,
otherwise Z (1̂S) would contain the whole ∆Z2

pk .

∆E ′∩∆A⊆E ∩∆A=;, thus E ′ is a tiling complement of A.
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Tiling: |A| = p2k−1 in Z2

pk

Let (A,B) be a tiling pair in Z2
pk with |A| = p2k−1.

There must be some equivalence class E that is disjoint with ∆A,
otherwise there is no place for ∆B .

There is an S with |S | = p2k−1 and Z (1̂S)=∆Z2
pk \E .

S is essentially of form H⊥⊕X ′, where H is a maximal cyclic
subgroup that contains E , while X is the equivalence class of the
subgroup of order |H |/|E | in H. (that S takes such a form will be
more evident in the symplectic setting)
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The symplectic settings

Symplectic form (anti-symmetric, bilinear):

〈x ,y 〉s = x1y2−x2y1 = 〈
(
x1
x2

)
,

(
0 1
−1 0

)(
y1
y2

)
〉,

where x = (x1,x2),y = (y1,y2).

Symplectic Fourier transform:

1̂sA(x)=
∑
a∈A

e2πi〈a,x〉s/n, A⊆Z2
n

Z (1̂sA) is the 90 degree rotation (a bijection) of Z (1̂A).

Remark: The Fourier transform incurs a 90 degree rotation on the
time-frequency plane, the rotation matrix is the symplectic matrix.
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Appetizer revisited

Let H be a cyclic subgroup in Z2
n generated by h, then

1̂sH(x)=
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e2πik〈h,x〉s/n =
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Examples
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More examples
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Characterizing orthogonal sets

A⊥ and A⊥s are always subgroups. If ab = n, then

(aZb×Zn)
⊥ = bZa× {0}, (aZb×Zn)

⊥s = {0}×bZa.

Fact 1: A set complements a subgroup H in Z2
n if and only if its

size is n2/|H | and it annihilates H⊥ (in the Euclidean setting) or
H⊥s (in the symplectic setting).

Fact 2: H is an order n subgroup in Z2
n if and only if H =H⊥s .

Fact 3: Poisson summation formula: If H is a subgroup, then

1̂sH = |H | ·1H⊥s
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Strategy and motivation revisited

To determine whether h ∈Z (1̂A) or Z (1̂sA), �rst we view the group
as generated by linear combinations of x ′,y ′, where h⊥ y ′ or
h⊥s y

′.

Next we project A to 〈x ′〉, and view the result as a univariate
polynomial evaluated at some point, the polynomial can then be
factorized.

Direct computation is often complicated, ideally we shall �nd a
map that preserves 〈·, ·〉 or 〈·, ·〉s (preserves tilingness and
spectrality), and can send orthogonal basis to standard basis.



24/57

Strategy and motivation revisited

To determine whether h ∈Z (1̂A) or Z (1̂sA), �rst we view the group
as generated by linear combinations of x ′,y ′, where h⊥ y ′ or
h⊥s y

′.

Next we project A to 〈x ′〉, and view the result as a univariate
polynomial evaluated at some point, the polynomial can then be
factorized.

Direct computation is often complicated, ideally we shall �nd a
map that preserves 〈·, ·〉 or 〈·, ·〉s (preserves tilingness and
spectrality), and can send orthogonal basis to standard basis.



24/57

Strategy and motivation revisited

To determine whether h ∈Z (1̂A) or Z (1̂sA), �rst we view the group
as generated by linear combinations of x ′,y ′, where h⊥ y ′ or
h⊥s y

′.

Next we project A to 〈x ′〉, and view the result as a univariate
polynomial evaluated at some point, the polynomial can then be
factorized.

Direct computation is often complicated, ideally we shall �nd a
map that preserves 〈·, ·〉 or 〈·, ·〉s (preserves tilingness and
spectrality), and can send orthogonal basis to standard basis.



25/57

The Euclidean case

Let us inspect whether this is possible for 〈·, ·〉:

Suppose x ,y generate Z2
n and x ⊥ y :

(1) If 〈Ua,Ub〉 = 〈a,b〉 holds for all a,b, then UU∗ = I .

(2) If Ux = (1,0)T ,Uy = (0,1)T , then U
(
x y

)= I , hence U =
(
xT

yT

)
and x1 ·x1+x2 ·x2 = y1 ·y1+y2 ·y2 = 1.

Conclusion: NOT always possible in Z2
n.
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Example

No such U exists for orthogonal pairs from {(0,0),(1,1),(2,2),(3,3)}
and {(0,0),(1,3),(2,2),(3,1)}:

x

x y

y

1 ·1+1 ·1= 3 ·3+3 ·3= 1 ·1+3 ·3= 2 (mod 4).

For x =
(
1
1

)
and y =

(
1
3

)
, the candidate U should be 2−1

(
1 1
1 3

)
, but

2 is not multiplicatively invertible in Z4.



26/57

Example

No such U exists for orthogonal pairs from {(0,0),(1,1),(2,2),(3,3)}
and {(0,0),(1,3),(2,2),(3,1)}:

x

x y

y

1 ·1+1 ·1= 3 ·3+3 ·3= 1 ·1+3 ·3= 2 (mod 4).

For x =
(
1
1

)
and y =

(
1
3

)
, the candidate U should be 2−1

(
1 1
1 3

)
, but

2 is not multiplicatively invertible in Z4.



26/57

Example

No such U exists for orthogonal pairs from {(0,0),(1,1),(2,2),(3,3)}
and {(0,0),(1,3),(2,2),(3,1)}:

x

x y

y

1 ·1+1 ·1= 3 ·3+3 ·3= 1 ·1+3 ·3= 2 (mod 4).

For x =
(
1
1

)
and y =

(
1
3

)
, the candidate U should be 2−1

(
1 1
1 3

)
, but

2 is not multiplicatively invertible in Z4.
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Symplectic bases

Fact: If 〈h,h′〉s = d and gcd(d ,n)= 1, then h,h′ generate Z2
n.

If d = 1, then h,h′ is a pair of symplectic basis.

Fact: Symplectic basis exists in any pair of generating maximal
cyclic subgroups.

Fact: Symplectic form is preserved on change of bases.

If x = x1h+x2h
′,y = y1h+y2h

′, then

〈x ,y 〉s = x1y1〈h,h〉s +x1y2〈h,h′〉s +x2y1〈h′,h〉s +x2y2〈h′,h′〉s
= x1y2−x2y1
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Symplectomorphisms

Symplectomorphism: change of symplectic bases

Fact: On Z2
n they are 2×2 matrices with det= 1.

(1) Unit determinant matrices preserve the symplectic form:

If S =
(
0 1
−1 0

)
, then 〈x ,y 〉s = 〈x ,Sy 〉, and A=

(
a b
c d

)
satis�es

A∗SA= S if and only if ad −bc = 1.

(2) Matrices formed by symplectic basis have unit determinant:

〈x ,y 〉s = x1y2−x2y1 = det

(
x1 y1
x2 y2

)
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Example

→

Any pair of generating maximal cyclic groups would work, they
don't have to be orthogonal to each other in the Euclidean sense.



30/57

Structures of Z2

p

The group dissects into maximal cyclic subgroups that mutually
intersect trivially.

There are p+1 such subgroups, each subgroup forms a line.
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Structures of Z2

p2

For every order p cyclic subgroup H, there are precisely p maximal
cyclic subgroups that intersect at H.
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Structures of Z2

pk

◦

◦

◦

◦ ◦

◦

◦ ◦

◦

◦

◦ ◦

◦

◦ ◦

◦

◦

◦ ◦

◦

◦ ◦

...

Each path from the root is a chain of cyclic subgroups by inclusion.
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T ⇒ S in Z2

p2

Theorem
Tiling sets are also spectral in Z2

p2
.

Su�ces to consider tiling sets of size p2. Let (A,B) be such a pair.

Denote and distinguish order p subgroups by their �slopes�:

K K0 K∞ K1
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T ⇒ S in Z2

p2

Let M = {i :∆Ki ⊆Z (1̂sA)} and M ′ = {i :∆Ki ∩Z (1̂sA)=;}

(1) If |M | = p+1, then ∆K ⊆Z (1̂sA), and (A,K ) is spectral.

(2) If |M | = 0, then ∆K ⊆Z (1̂sB), hence B complements K , which

implies ∆B ∩Z (1̂sB)=;. Therefore ∆B ⊆Z (1̂sA), then (A,B) is
spectral. (Mutual Annihilation)

(3) If 0< |M | < p+1, then depending on the status of leaf nodes:

(3.1) A annihilates a maximal path;

(3.2) A annihilates a full sub-branch of some m′ ∈M ′;

(3.3) No other cases possible.
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T2S case (1)

∗

•

? ?

•

? ?

•

? ?
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T2S case (2)

∗

◦

? ?

◦

? ?

◦

? ?

That B complementing K does not mean A is K , an example:

(Not K)

⊕

(Complements K)

=
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A counting lemma

Lemma
If x ∈Z (1̂sA), and ord(x)= p is a prime power, then

|A∩〈px〉⊥s | = p · |A∩〈x〉⊥s |

For illustration purpose, let's say x = (0,1):

x

⇒

〈x〉⊥s 〈px〉

⇒

〈px〉⊥s
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A counting lemma

x

⇒

〈x〉⊥s 〈px〉

⇒

〈px〉⊥s

Let ω= e2πi/p
2
,P(z)= ∑

(a1,a2)∈A
za1 , then

1̂sA(x)=
∑

(a1,a2)∈A
e2πi(a1·1−a2·0)/p

2 = ∑
(a1,a2)∈A

ωa1 =P(ω).

If x ∈Z (1̂sA), then P(ω)= 0, which means P(z) is divisible by the
p2-th cyclotomic polynomial, hence

P(ω)= (1+ωp+ . . .+ωp(p−1))(c0+c1ω+ . . .+cp−1ωp−1).
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A counting lemma

x

⇒

〈x〉⊥s 〈px〉

⇒

〈px〉⊥s

1̂sA(x)=
∑
a∈A

ω〈a,x〉s = ∑
(a1,a2)∈A

ωa1

= (1+ωp+ . . .+ωp(p−1))(c0+c1ω+ . . .+cp−1ωp−1).

c0 = |A∩〈x〉⊥s |

pc0 =sum of coe�cients in front of 1,ωp , . . . ,ωp(p−1) = |A∩〈px〉⊥s |
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Mutual annihilation

Lemma
If B complements K , then ∆B ∩Z (1̂sB)=;.

Su�ces to show B ∩Z (1̂sB)=;, otherwise if b−b′ ∈∆B ∩Z (1̂sB),
then consider equivalently B −b′. Similarly 0 ∈B can be assumed.

Suppose b ∈B ∩Z (1̂sB), then |B ∩〈b〉| ≥ 2, hence |B ∩〈bp〉⊥s | ≥ 2p.

Fact: B complements K ⇒ ord(b)= p2 ⇒ |B∩〈bp〉⊥s | = p.

W.L.O.G., take b = (0,1), then 〈bp〉⊥s = {(u,v) : u mod p = 0},
B = {κx ,y + (x ,y)} with κx ,y ∈K and x ,y ranging from 0 to p−1.

|B ∩〈bp〉⊥s | = |{κ0,y + (0,y)}| = p.
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T2S case (3.1)

∗

•

• ?

?

? ?

◦

? ?
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T2S case (3.2)

∗

•

◦ ◦

?

? ?

◦

• •

(in Z(1̂s
A
)) S = {(0,0),(0,1)}⊕ {(0,0),(2,0)}

◦ ◦
◦ ◦

∆S =∆E ′ ⊕∆K0

◦

◦

◦
◦

◦
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T2S case (3.2)

∗

•

◦ ◦

?

? ?

◦

• •

(in Z(1̂s
A
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T2S case (3.3)

∗

•

◦ ◦

◦

◦ ?

◦

◦ ?

B has to annihilate the white nodes, which implies that

B annihilates Zp2 \K and all ∆Ki for i in M ′, it has too many zeros!

(in Z(1̂s
B
))

⇒

(in Z(1̂s
B
))

+

+

+

+
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A form of uncertainty principle

Fact: A set can not annihilate (the di�erence of) a larger subgroup.

Suppose ∆H ⊆Z (1̂sA) where H is a subgroup and |H | > |A|.

Then ∆Z2
n ⊆Z (1̂sA · 1̂s

H⊥s ),

which means |A| ≥ n2/|H⊥s | = |H | > |A|.
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Excessive zeros

(in Z(1̂s
B
))

⇒

(in Z(1̂s
B
))

+

+

∆({0}×Zp2)⊆Z (1̂sB) implies B = {(0,b0), . . . ,(p2−1,bp2−1)}.

Set Bm = {(kp+m,bkp+m) : k = 0, . . . ,p−1}, um =
p−1∑
k=0

e2πibkp+m/p
2
.

K⊥
0 \K ⊆Z (1̂sB) implies Fu = 0. F : p×p Fourier matrix, u = (u0, . . . ,up−1)T .

Thus u = 0, consequently for each �xed m, {bkp+m}p−1
k=0 = {kp}p−1

k=0.

If x = (p,1), then 1̂sB(x)=
p2−1∑
k=0

e2πik/p
2 = 0 (since pbkp+m = 0mod p2).
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k=0 = {kp}p−1

k=0.

If x = (p,1), then 1̂sB(x)=
p2−1∑
k=0

e2πik/p
2 = 0 (since pbkp+m = 0mod p2).
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S ⇒T in Z2

p2

Theorem
Spectral sets are also tiling in Z2

p2
.

Let (A,S) be a spectral pair, both containing the identity.

Su�ces to consider p2 ≤ |A| < p3 and p ≤ |A| < p2.

The aim is to produce a B so that ∆A∩∆B =;, and |B | = p2 or p3

respectively.
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S2T : p2 ≤ |A| < p3

(1) There is some B satisfying ∆A∩∆B =;, and B either is or
complements an order p2 subgroup.

(2) ∆A intersects each order p2 subgroup (i.e., K and each
maximal cyclic subgroup) non-trivially.

Consider M = {i :∆Ki ∩∆A ̸= ;} and M ′ = {i :∆Ki ∩∆A=;)}.

If m′ ∈M ′, and H ′ =E ∪Km′ is a maximal cyclic subgroup,

then E ∩∆A ̸= ; (since ∆A∩∆H has to be non-empty).

(2.1) |M ′| > 0, ∃m ∈M with empty leaf: complements some Ki ⊕E ′.

(2.2) |M ′| > 0, no branch of M has empty leaf: impossible.

(2.3) |M ′| = 0: S is a tiling complement of K , mutual annihilation.
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S2T : p2 ≤ |A| < p3 case (2.1)

∗

•

◦ ◦

•

? ◦

◦

• •

∆A omits

⇒

B and ∆B

◦ ◦

◦ ◦

∆

∆
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S2T : p2 ≤ |A| < p3 case (2.2)

∗

•

• ◦

•

• ◦

◦

• •

More complicated than the T2S (3.3) excessive zero case, since
|S | ≥ p2 instead of = p2.

On the other hand, 1̂sS has more zeros than in the setting of the
excessive zero case.

This puts more restrictions on it and leads to a contradiction by
counting.
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S2T : p2 ≤ |A| < p3 case (2.3)

∗

•

? ◦

•

? ◦

•

? ◦

For each Ki , there shall be some maximal cyclic subgroup Hi so
that ∆A∩∆Hi ⊆Ki , otherwise ∆K

⊥s

i ⊆Z (1̂sS) (violates uncertainty).

If S falls into (2.1) or (2.2), then |A| = |S | = p2, which leads to
mutual annihilation.

Otherwise both ∆A and ∆S comply with the above tree and will
lead to a contradiction by counting as in (2.2).
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S2T : p ≤ |A| < p2

Consider again M = {i :∆Ki ∩∆A ̸= ;} and M ′ = {i :∆Ki ∩∆A=;)}.

M ′ is not empty, otherwise S annihilates K (subgroup of larger
size).

Similarly if H =E ∪Ki is a maximal cyclic subgroup, then ∆A can
not intersect both E and Ki .

The branch of every m ∈M must have empty leaf node.
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S2T : p ≤ |A| < p2

(1) ∆A intersects each order p2 subgroup non-trivially:

⇒ M is not empty (since ∆A needs to intersect K ).

⇒ The branch of every m′ ∈M ′ has full leaf.

⇒ S can tile along with some E ′⊕Ki .

(2) ∆A∩∆K =;.
(2.1) There is some E ′ such that ∆E ′∩∆(A⊕K )=;: (A,K ⊕E ) is
a tiling pair.

(2.2) No such E ′: impossible by the counting lemma.

(3) ∆A∩∆H =; for some maximal cyclic subgroup H.

Reduce to Zp2 ×Zp.
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S2T : p ≤ |A| < p2 case (1)

∗

•

◦ ◦

•

◦ ◦

◦

• •
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S2T : p ≤ |A| < p2 case (2)

∗

◦

• ?

◦

• ?

◦

• ?

At least one leaf in each branch for ∆(A⊕K ) to intersect all ∆E ′.

Apply counting lemma on S and each branch: |S ∩K⊥s

i | = p|S ∩Hi |.

Sum over i : |S |+p|S ∩K | = p2+p|S ∩K |+p|S ∩Ei | ⇒ |S | ≥ p2.
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S2T : p ≤ |A| < p2 case (3)

∗

•

◦ ◦

◦

? ?

◦

? ◦

Let ai = |A∩ (K⊥s

i \K )|,b = |A∩K |,a′i = |S ∩ (K⊥s

i \K )|,b′ = |S ∩K |.

Counting ⇒ b,b′ < p (otherwise |A| ≥ p2) ⇒ ai ̸= 0⇔ a′i ̸= 0.

Let R = {i : ai ̸= 0}, then p|(ai +b) (counting), and |R | ≤ |M ′| ≤ p.

(|R |−1)b = (
∑

i∈R ai +b)−|A| is divisible by p.

|R | = 1 ⇒ reduce to Zp2 ×Zp.
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Summary

To analyze the zero set of a given set, we project it onto maximal
cyclic subgroups to reduce to univariate polynomials.

This leads to immediate results for highest (both) / lowest (T2S
only) order tiling/spectral sets in prime power cases.

To facilitate further computations we need a better way of
changing bases, and this shall be done in the symplectic setting.

Structures and results on Z2
p2

are briefed by a case discussion along

its tree structure.
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