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Quick facts and notations

Fourier transform:

Ta(x)= Y e2ri@x/n Ac7?
acA

Zero set:
Z(1a)=xe€Z2: T4(x) =0

Difference set:
AA={a—a :aad €A a#a}



Quick facts and notations

Al=1|S
(A,S) is a spectral pairon 72 o A= |A
ASEZ(lA)

N |Al-1B| = n?
(A, B) is a tiling pair on 72 {

AZ% - Z(TA) U Z(TB)



Appetizer

Let H be a maximal cyclic subgroup in Z2 generated by h, then

TH(X) = niil e2ﬂik(h,X)/n — O If <h)X> # O,
k=0 n if (h,x) =0,

which means
Z(1y) ={xe 7% : (h,x) #0}.



Appetizer

Let H be a maximal cyclic subgroup in Z2 generated by h, then

0 if ¢hx)#0,

n-1
Tu(x) = e2nik(h,x)/n:
H(x) 20 nif (hx) =0,

which means
Z(1y) ={xe 7% : (h,x) #0}.

Orthogonal set:

Al =ixeZ2:(a,x)=0, Vac A}.



Poisson summation formula (maximal cyclic subgroups)
If H is a maximal cyclic subgroup, then
Z(Iy)=22\H*

More precisely
Ty =IHl 1



Poisson summation formula (maximal cyclic subgroups)
If H is a maximal cyclic subgroup, then
Z(Iy)=22\H*

More precisely
Ty =IHl 1

Spoiler: This actually holds for all subgroups.



Examples




How about such sets?




Basic observation

Given some A, let's consider whether x = (k,0) is in Z(1,):

TA(X) — Z e2mi(ar-k+az0)/n _ Z G2miark/n

(al,az)EA (al,az)EA



Basic observation

Given some A, let's consider whether x = (k,0) is in Z(1,):

TA(X) — Z e2mi(ay-k+az0)/n _ Z G2miark/n
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(1) If Ay is the multiset obtained by applying (a1, a2)— (a1,0) on
A, then T(x) =14, (x) for x = (k,0).



Basic observation

Given some A, let's consider whether x = (k,0) is in Z(1,):

TA(X) — Z e2mi(ay-k+az0)/n _ Z G2miark/n

(al,az)EA (al,az)EA

(1) If Ay is the multiset obtained by applying (a1, a2)— (a1,0) on
A, then T(x) =14, (x) for x = (k,0).
2mia1-k/n

(2) We may view ¥ (4, a,)ea€ as the univariate polynomial

evaluated at z = e27k/n



The idea

Given some A and x, to determine whether x € Z(1,), we find
some x',y’ so that xe (xy, x' Ly, and x',y’ generates Z2.



The idea

Given some A and x, to determine whether x € Z(1,), we find
some x',y’ so that xe (xy, x' Ly, and x',y’ generates Z2.

x',y" is a pair of “orthogonal Euclidean basis”, and if x’ = (x1,x2),
then y' = (—xo,x1).



The idea

Given some A and x, to determine whether x € Z(1,), we find
some x',y’ so that xe (xy, x' Ly, and x',y’ generates Z2.

x',y" is a pair of “orthogonal Euclidean basis”, and if x’ = (x1,x2),
then y' = (—xo,x1).

Write every element a€ A into linear combinations of x/,y’, then
repeating the same procedure we obtain

~

(1) 1a(x) depends only on the projection of A into (x);

(2) Ta(x) can be viewed as a univariate polynomial evaluated at
z = e?"k/" where k is the value so that x = kx’.



Facts: disjointness of difference sets

Fact 1:
A+B=AaB < AANAB=¢



Facts: disjointness of difference sets

Fact 1:
A+B=AaB < AANAB=¢

Define an equivalence relation in finite Abelian groups: h~ b’ if
h,h' generate the same cyclic subgroup.

Fact 2: Let E be an arbitrary equivalence class under ~, then
AANE and ABn E can not be both non-empty.



Facts: disjointness of difference sets

Fact 1:
A+B=AaB < AANAB=¢

Define an equivalence relation in finite Abelian groups: h~ b’ if
h,h' generate the same cyclic subgroup.

Fact 2: Let E be an arbitrary equivalence class under ~, then
AANE and ABn E can not be both non-empty.

Reason(dilation trick): If gcd(m,|Al)=1 and (A, B) is a tiling pair,
then (mA, B) is still a tiling pair.



Equivalence classes




Facts: a representation of Zpk

Expand every element of Z . in base p, then each element can be
represented by a k-digit base p number.

Fact: Subgroups have common trailing Os:

A subgroup of size pt consists of all numbers whose last k-t digits
are 0, and its generators are of the form:

d1...dt_1X0 ...... 0,
——
k—t digits

with x#0 and di,...,d;_1 arbitrary.



Quick facts and notations

Let

—_——
t-1 digits k-t digits

then |C'| = p, and both C’',AC’ belong to the same equivalence
class.



Quick facts and notations

Let

—_——
t-1 digits k-t digits

then |C'| = p, and both C’',AC’ belong to the same equivalence
class.

Let E be an equivalence class in levk’ and he E.
E generates a cyclic group of some prime power order, hence if
E'={0,h,...,(p-1)h},

then |E'| = p, and both E/,AE' c E.



Quick facts

All elements in a given equivalence class are simultaneously
annihilated.



Quick facts

All elements in a given equivalence class are simultaneously
annihilated.

Each equivalence class E contains an size p subset E’ whose
difference set is still in the class.

We will construct sets of form Ej @ E] ®...® E/, as spectra for
tilings sets or tiling complements for spectral sets in Zik.



Some immediate consequences

Lemma
If he Z(1,), then 14 annihilates the whole equivalence class of h.
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Some immediate consequences

Lemma
If he Z(1,), then 14 annihilates the whole equivalence class of h.

Lemma
If he Z(14) and ord(h) = p¥, then p divides |A|.

Proposition
IfAc vak is a tiling set with |Al=p or p*=1, then A is spectral.

Proposition
IfAc levk is a spectral set with |A| = p**~1, then A is tiling.

Theorem
Tiling sets and spectral sets coincide in Zf,.



T=S: |Al=pin zik
Let (A, B) be a tiling pair in zik with |A] = p.

Z(14) # @ must hold, otherwise Z(1g) would contain the whole
AZik.

There is some equivalence class E with E< Z(14), and E' is a
spectrum of A.



. 2k-1 2
S=T: |Al=p in Zpk
Let (A,S) be a spectral pair in Zik with |A] > p?k=L.

There must be some equivalence class E that is disjoint with AA,
otherwise Z(1s) would contain the whole AZik.

AE'NAAS ENnAA=g, thus E' is a tiling complement of A.



Tiling: 1Al = p?*~Lin Z;ka
Let (A, B) be a tiling pair in zik with |A] = p?k=L.

There must be some equivalence class E that is disjoint with AA,
otherwise there is no place for AB.

There is an S with |S] = p?¢~1 and Z(Ts) ZAZik\E-

S is essentially of form Ht @ X', where H is a maximal cyclic
subgroup that contains E, while X is the equivalence class of the
subgroup of order [H|/|IE| in H. (that S takes such a form will be
more evident in the symplectic setting)



The symplectic settings

Symplectic form (anti-symmetric, bilinear):

0 1
X, ¥)s = X1y =Xo)1 = <(2) ’ (—1 O) (§;)>

where x = (X1,X2)yy = (}’1,)/2)-
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Symplectic form (anti-symmetric, bilinear):

0 1
X, ¥)s = X1y =Xo)1 = <(2) ’ (—1 O) (§;)>
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Symplectic Fourier transform:

Ti\(x) =) gZritax)s/n A 72
acA



The symplectic settings

Symplectic form (anti-symmetric, bilinear):

0 1
X, ¥)s = X1y =Xo)1 = <(2) ’ (—1 0) (§;)>

where x = (x1,x2),y = (y1,)2)-
Symplectic Fourier transform:

Ti‘(x) = Z e2mitax)s/n A Z,%
acA

Z(Ti\) is the 90 degree rotation (a bijection) of Z(14).



The symplectic settings

Symplectic form (anti-symmetric, bilinear):

0 1
X, ¥)s = X1y =Xo)1 = <(2) ’ (—1 0) (§;)>

where x = (x1,x2),y = (y1,)2)-
Symplectic Fourier transform:

Ti‘(x) = Z e2mitax)s/n A Z,%
acA

Z(Ti\) is the 90 degree rotation (a bijection) of Z(14).

Remark: The Fourier transform incurs a 90 degree rotation on the
time-frequency plane, the rotation matrix is the symplectic matrix.



Appetizer revisited

Let H be a cyclic subgroup in Z2 generated by h, then
~ n-1 : 0 if(hx)s#0,

17_](X) — Z e2mk<h,x)5/n — . s
k=0 n if (hx)s=0,

thus
Z(1%)) = {x € Z2: (h,x)s # 0}.



Appetizer revisited

Let H be a cyclic subgroup in Z2 generated by h, then

13 (x) = "f G2rikths/n _ |0 i (hx)s#0,
! k=0 n if <h»X>s = 0;

thus
Z(1%)) = {x € Z2: (h,x)s # 0}.

Symplectic orthogonal sets:

Hts = (x € Z2 : (h,x)s = O}.



Examples

VS

VS




More examples

VS

VS

'S




Characterizing orthogonal sets

At and A's are always subgroups. If ab=n, then

(aZpx Zp)" = bZox {0}, (aZpxZ,)"* =10} x bZ,.



Characterizing orthogonal sets

At and A's are always subgroups. If ab=n, then

(aZpx Zp)" = bZox {0}, (aZpxZ,)"* =10} x bZ,.

Fact 1: A set complements a subgroup H in Z2 if and only if its
size is n?/|H| and it annihilates H* (in the Euclidean setting) or
H*s (in the symplectic setting).

Fact 2: H is an order n subgroup in Z2 if and only if H=H"s.
Fact 3: Poisson summation formula: If H is a subgroup, then

15, = HI- 1



Strategy and motivation revisited

To determine whether he Z(14) or Z(Tj\), first we view the group
as generated by linear combinations of x’,y’, where h Ly’ or
hlgy'



Strategy and motivation revisited

To determine whether he Z(14) or Z(Tj\), first we view the group
as generated by linear combinations of x’,y’, where h Ly’ or
hlgy'

Next we project A to (x'), and view the result as a univariate
polynomial evaluated at some point, the polynomial can then be
factorized.



Strategy and motivation revisited

To determine whether he Z(14) or Z(Tj\), first we view the group
as generated by linear combinations of x’,y’, where h Ly’ or
hlgy'

Next we project A to (x'), and view the result as a univariate
polynomial evaluated at some point, the polynomial can then be
factorized.

Direct computation is often complicated, ideally we shall find a
map that preserves (,-) or (-,-)s (preserves tilingness and
spectrality), and can send orthogonal basis to standard basis.



The Euclidean case

Let us inspect whether this is possible for (-,-):



The Euclidean case

Let us inspect whether this is possible for (-,-):

Suppose x,y generate Z2 and x L y:

(1) If (Ua, Uby = (a, by holds for all a,b, then UU* =1.

T
(2) If Ux = (1,0)T’ Uy= (0,1)7', then U(x y) =1, hence U= (;-’—)

and x1-x1+x0-x=y1-yi+ys-yo=1.



The Euclidean case

Let us inspect whether this is possible for (-,-):

Suppose x,y generate Z2 and x L y:

(1) If (Ua, Uby = (a, by holds for all a,b, then UU* =1.

T
(2) If Ux = (1,0)T’ Uy= (0,1)7', then U(x y) =1, hence U= (;-’—)

and x1-x1+x0-x=y1-yi+ys-yo=1.

Conclusion: NOT always possible in Z2.



Example

No such U exists for orthogonal pairs from {(0,0),(1,1),(2,2),(3,3)}
and {(0,0),(1,3),(2,2),(3, 1)}




Example

No such U exists for orthogonal pairs from {(0,0),(1,1),(2,2),(3,3)}
and {(0,0),(1,3),(2,2),(3, 1)}

1-141-1=3-3+3-3=1-14+3-3=2 (mod 4).



Example

No such U exists for orthogonal pairs from {(0,0),(1,1),(2,2),(3,3)}
and {(0,0),(1,3),(2,2),(3, 1)}

1-141-1=3-3+3-3=1-14+3-3=2 (mod 4).

For x = (1) and y = (é) the candidate U should be 271 (1 :1))) but

2 is not multiplicatively invertible in Z4.



Symplectic bases

Fact: If (h,h')s =d and gcd(d,n) =1, then h,h’ generate Z%.



Symplectic bases

Fact: If (h,h')s =d and gcd(d,n) =1, then h,h’ generate Z%.

If d =1, then h,h" is a pair of symplectic basis.

Fact: Symplectic basis exists in any pair of generating maximal
cyclic subgroups.



Symplectic bases

Fact: If (h,h')s =d and gcd(d,n) =1, then h,h’ generate Z%.

If d =1, then h,h" is a pair of symplectic basis.

Fact: Symplectic basis exists in any pair of generating maximal
cyclic subgroups.

Fact: Symplectic form is preserved on change of bases.

If x=xih+xoh,y=y1h+y,h, then

6, y)s = x1y1(h, hys + x1yo(h, by s + xay1 (h', hYs + xoya (B, B) s

=X1y2 —Xoy1



Symplectomorphisms

Symplectomorphism: change of symplectic bases

Fact: On Z2 they are 2 x 2 matrices with det = 1.



Symplectomorphisms

Symplectomorphism: change of symplectic bases

Fact: On Z2 they are 2 x 2 matrices with det = 1.

(1) Unit determinant matrices preserve the symplectic form:

0 1 a b e
If S= (_1 O)’ then (x,y)s =(x,Sy), and A= (c d) satisfies

A*SA=S if and only if ad — bc=1.



Symplectomorphisms

Symplectomorphism: change of symplectic bases

Fact: On Z2 they are 2 x 2 matrices with det = 1.

(1) Unit determinant matrices preserve the symplectic form:

0 1 R
If S= (_1 O)’ then (x,y)s =(x,Sy), and A= (c

A*SA=S if and only if ad — bc=1.

b) satisfies
d

(2) Matrices formed by symplectic basis have unit determinant:

U LI
(X, ¥)s =x1y2 Xz)/1—det(x2 yz)



Example

Any pair of generating maximal cyclic groups would work, they
don’t have to be orthogonal to each other in the Euclidean sense.



Structures of Z,%

The group dissects into maximal cyclic subgroups that mutually
intersect trivially.

There are p+1 such subgroups, each subgroup forms a line.



Structures of Z;sz

For every order p cyclic subgroup H, there are precisely p maximal
cyclic subgroups that intersect at H.



Structures of Z2,
p

(e]

I
ANANA
AN

Each path from the root is a chain of cyclic subgroups by inclusion.




T=Sin 72
p

Theorem
Tiling sets are also spectral in Ziz.



T=Sin 72
p

Theorem
Tiling sets are also spectral in 21292'

Suffices to consider tiling sets of size p2. Let (A, B) be such a pair.



T=Sin 72
p

Theorem
Tiling sets are also spectral in 21292'

Suffices to consider tiling sets of size p2. Let (A, B) be such a pair.

Denote and distinguish order p subgroups by their “slopes”™




T=Sin 72
p

Let M=1{i:AK; < Z(15)} and M’ ={i: AK;n Z(15) = o}
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T=Sin 72
p
Let M=1{i:AK; < Z(15)} and M’ ={i: AK;n Z(15) = o}

(1) If IM]=p+1, then AK < Z(15), and (A,K) is spectral.

(2) If IM| =0, then AK;Z(TSB), hence B complements K, which
implies ABN Z(1%) = @. Therefore AB< Z(15), then (A, B) is
spectral. (Mutual Annihilation)



T=Sin 72
p
Let M=1{i:AK; < Z(15)} and M’ ={i: AK;n Z(15) = o}

(1) If IM]=p+1, then AK < Z(15), and (A,K) is spectral.

(2) If IM| =0, then AKQZ(TSB), hence B complements K, which
implies ABN Z(1%) = @. Therefore AB< Z(15), then (A, B) is
spectral. (Mutual Annihilation)

3) If 0<|M| < p+1, then depending on the status of leaf nodes:

) A annihilates a maximal path;

~ o~~~

3.1
3.2) A annihilates a full sub-branch of some m’' e M’;
3.3

) No other cases possible.



T2S case (1)

??????



T2S case (2)

[ S Y S

That B complementing K does not mean A is K, an example:

(Not K) (Complements K)



A counting lemma

Lemma
If xe Z(Ti\), and ord(x) = p is a prime power, then

JAN (px) =] = p-|AN (x) ]



A counting lemma

Lemma
If xe Z(Ti\), and ord(x) = p is a prime power, then

JAN (px) =] = p-|AN (x) ]

For illustration purpose, let's say x =(0,1):

x Gots (px) (pots



A counting lemma

= =
x (x)ts (px) (pts
H 2
Let w = e27i/P ,P(z)= ¥ z?, then
(21,32)€A

L= X

(al,az)EA

e2ni(al‘1—az~0)/p2 _

(31,32)€A



A counting lemma

x poks P (ks

Let w=e?"/P’ P(z)= ¥z, then

(31,32)€A

()= Y eriala0)/pt oy 3 p(g),
(al,az)eA (31,32)€A

If xe Z(Ti\), then P(w) =0, which means P(z) is divisible by the
p>-th cyclotomic polynomial, hence

P(w)=(1+wP+...+0PP ) (q+cio+...+ cp-10P7h).



A counting lemma

x oaots (P (pts

B=T o= ¥ o
acA (a1,a2)€A

=(1+wP+...+wP?P)(q +aw+...+cprPh).



A counting lemma

x oaots (P (pts

B=T o= ¥ o
acA (a1,a2)€A

=(1+wP+...+0PP ) (q +aw+...+cprPh).

co=I1AN ()t



A counting lemma

x oaots (P (pts

B=T o= ¥ o
acA (a1,a2)€A

=(1+wP+...+0PP ) (q +aw+...+cprPh).

co=I1AN ()t

pco =sum of coefficients in front of LoP,...,0PP) = AN (px)*s|



Mutual annihilation

Lemma
If B complements K, then ABn Z(TE) =9.
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Lemma
If B complements K, then ABn Z(TE) =9.

Suffices to show Bn Z(TSB) = @, otherwise if b—b' € ABn Z(TSB),
then consider equivalently B—b'. Similarly 0 € B can be assumed.
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Fact: B complements K = ord(b)=p?> = |Bn{bp)*s|=p.



Mutual annihilation

Lemma
If B complements K, then ABn Z(TE) =9.

Suffices to show Bn Z(TSB) = @, otherwise if b—b' € ABn Z(TSB),
then consider equivalently B—b'. Similarly 0 € B can be assumed.

Suppose be BmZ(TsB), then |Bn(b)| =2, hence |Bn (bp)*ts| =2p.
Fact: B complements K = ord(b)=p?> = |Bn{bp)*s|=p.

W.L.O.G., take b=(0,1), then (bp)*s ={(u,v): umod p=0},
B = {xx,y +(x,y)} with x5, € K and x,y ranging from 0 to p—1.



Mutual annihilation

Lemma
If B complements K, then ABn Z(TE) =9.

Suffices to show Bn Z(TSB) = @, otherwise if b—b' € ABn Z(TSB),
then consider equivalently B—b'. Similarly 0 € B can be assumed.

Suppose be BmZ(TsB), then |Bn(b)| =2, hence |Bn (bp)*ts| =2p.
Fact: B complements K = ord(b)=p?> = |Bn{bp)*s|=p.

W.L.O.G., take b=(0,1), then (bp)*s ={(u,v): umod p=0},
B = {xx,y +(x,y)} with x5, € K and x,y ranging from 0 to p—1.

|B N (bp)y*s| =ixo,, +(0,y)} = p.



??????



0O o 7 7 e e



T2S case (3.2)

o o
o (o) o (o)
(o) (o)

(in Z(1%) 5=1{(0,0),(0,1)}®{(0,0),(2,0)} AS=AE'®AKg



T2S case (3.3)

o o o 7?7 o ?



T2S case (3.3)

/

\

B has to annihilate the white nodes, which implies that

B annihilates sz\K and all AK; for i in M', it has too many zeros!

+[+

+[+

(in Z(1%)) (in Z(1%))



A form of uncertainty principle

Fact: A set can not annihilate (the difference of) a larger subgroup.
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Fact: A set can not annihilate (the difference of) a larger subgroup.

Suppose AHQZ(TZ) where H is a subgroup and |H| > |A|.



A form of uncertainty principle

Fact: A set can not annihilate (the difference of) a larger subgroup.
Suppose AHQZ(TZ) where H is a subgroup and |H| > |A|.

Then AZ%2c Z(15-15,,,),



A form of uncertainty principle

Fact: A set can not annihilate (the difference of) a larger subgroup.
Suppose AHQZ(TZ) where H is a subgroup and |H| > |A|.
Then AZ%2c Z(15-15,,,),

which means |A| = n?/|H*s| = [H| > |Al.



Excessive zeros

+
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A0} x Z,2) € Z(1%) implies B ={(0,bp), ..., (P> =1, by2_1)}.
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(in Z(1%)) (in Z(1%))
A0} x Z,2) € Z(1%) implies B ={(0,bp), ..., (P> =1, by2_1)}.

Pl omib 2
Set By ={(kp+m,byp+m)  k=0,...,p=1}, up= ¥ e kp+m/P”
k=0
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Pl omib 2
Set By ={(kp+m,byp+m)  k=0,...,p=1}, up= ¥ e kp+m/P”
k=0

KOL \ KEZ(TSB) implies Fu=10. F:pxp Fourier matrix, u=(ug,..., up,l)T.



Excessive zeros

+

+

(in Z(1%)) (in Z(1%))
A0} x Z,2) € Z(1%) implies B ={(0,bp), ..., (P> =1, by2_1)}.
PEL onibipem/ P2
Set By ={(kp+m,bypim)  k=0,...,p=1}, upm= ¥ eT'Pkosm/P"
k=0
KOL\KEZ(TSB) implies Fu=10. F:pxp Fourier matrix, u=(ug,..., up,l)T.

Thus u =0, consequently for each fixed m, {bkp+m}’;;(1) = {kp}’,:(ll.



Excessive zeros

+

+

(in Z(1%)) (in Z(1%))
A0} x Z,2) € Z(1%) implies B ={(0,bp), ..., (P> =1, by2_1)}.

p-1 b 5
Set By = {(kP+ m»bkp+m) ck=0,...,p—-1}, um= X 27 kp+m/ P .
k=0
KOL \Kc Z(T‘SB) implies Fu=0. F:pxp Fourier matrix, u=(ug,..., up,l)T.
Thus u=0, consequently for each fixed m, {bkp+m}’;;(1) = {kp}lz;(ll_

2

Ts P 2mik / p? . 5
If X = (P,l), then 1B(X) = =, e =0 (since Pbkp+m=0m0dp ).
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Theorem
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Theorem
Spectral sets are also tiling in Ziz.

Let (A,S) be a spectral pair, both containing the identity.
Suffices to consider p? < |A| < p® and p<|A| < p?.

The aim is to produce a B so that AANAB =g, and |B| = p? or p3
respectively.
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S2T :p?<|Al<p?

(1) There is some B satisfying AANAB =@, and B either is or
complements an order p? subgroup.

(2) AA intersects each order p? subgroup (i.e., K and each
maximal cyclic subgroup) non-trivially.

Consider M={i: AKinAA# @} and M'={i: AKinAA=g)}.
If meM’, and H' = EU K,y is a maximal cyclic subgroup,

then ENAA# @ (since AANAH has to be non-empty).

(2.1) IM'| >0, 3me M with empty leaf: complements some K;o E’.
(2.2) IM'| >0, no branch of M has empty leaf: impossible.
(2.3) IM'|=0: S is a tiling complement of K, mutual annihilation.
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*

AA omits B and AB
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S2T : p? < |Al < p® case (2.2)

More complicated than the T2S (3.3) excessive zero case, since
|S| = p? instead of = p2.

On the other hand, T‘; has more zeros than in the setting of the
excessive zero case.

This puts more restrictions on it and leads to a contradiction by
counting.
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S2T : p? < |Al < p® case (2.3)

/IN

ANAA

?7 o ? o 7?7 o

*

For each K;, there shall be some maximal cyclic subgroup H; so
that AANAH; < K, otherwise AKI.LS € Z(1%) (violates uncertainty).

If S falls into (2.1) or (2.2), then |A| =S| = p?, which leads to
mutual annihilation.

Otherwise both AA and AS comply with the above tree and will
lead to a contradiction by counting as in (2.2).
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Consider again M={i: AKinAA# @} and M'={i: AKinAA=@)}.

M’ is not empty, otherwise S annihilates K (subgroup of larger
size).

Similarly if H=E UK is a maximal cyclic subgroup, then AA can
not intersect both E and K.

The branch of every me M must have empty leaf node.
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(1) AA intersects each order p? subgroup non-trivially:
= M is not empty (since AA needs to intersect K).
=  The branch of every m' € M’ has full leaf.

= S can tile along with some E'® K;.

(2) AANAK =¢.

(2.1) There is some E’ such that AE'NnA(AeK)=¢: (AKeE)is
a tiling pair.

(2.2) No such E’: impossible by the counting lemma.

(3) AANAH = @ for some maximal cyclic subgroup H.

Reduce to Z,> x Z),.
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S2T : p<|Al < p? case (2)

At least one leaf in each branch for A(A® K) to intersect all AE'.
Apply counting lemma on S and each branch: ISHK,.lSI =plSnH;l.

Sum over it |S|+plSNK|=p?>+p|SNK|+plSNE| = |S|=p°
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S2T : p<|Al < p? case (3)
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*

Let a; = |An (K \K),b=IAnK|,a;=1Sn (K" \K)|,b' =1Sn K.
Counting =  b,b' <p (otherwise |A|=p?) = a;#0« a; #0.
Let R={i:a; #0}, then pl|(a; + b) (counting), and |R| < |M'| < p.
(IRI-1)b=(Xjcgai + b) — Al is divisible by p.

IRI=1 = reduce to Z,2 x Zp.
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Summary

To analyze the zero set of a given set, we project it onto maximal
cyclic subgroups to reduce to univariate polynomials.

This leads to immediate results for highest (both) / lowest (T2S
only) order tiling/spectral sets in prime power cases.

To facilitate further computations we need a better way of
changing bases, and this shall be done in the symplectic setting.

Structures and results on Zi2 are briefed by a case discussion along
its tree structure.






