Some Insights on Zeros of Fourier Transforms of Sets in \mathbb{Z}_n^2

Weiqi Zhou

2025.09

Quick facts and notations

Fourier transform:

$$\widehat{1}_A(x) = \sum_{a \in A} e^{2\pi i \langle a, x \rangle / n}, \quad A \subseteq \mathbb{Z}_n^2$$

Zero set:

$$Z(\widehat{1}_A) = \{x \in \mathbb{Z}_n^2 : \widehat{1}_A(x) = 0\}$$

Difference set:

$$\Delta A = \{a - a' : a, a' \in A, a \neq a'\}$$

Quick facts and notations

$$(A,S)$$
 is a spectral pair on $\mathbb{Z}_n^2 \Leftrightarrow \begin{cases} |A| = |S| \\ \Delta S \subseteq Z(\widehat{1}_A) \end{cases}$

$$(A,B) \text{ is a tiling pair on } \mathbb{Z}_n^2 \quad \Leftrightarrow \quad \begin{cases} |A|\cdot |B| = n^2 \\ \Delta \mathbb{Z}_n^2 \subseteq Z(\widehat{1}_A) \cup Z(\widehat{1}_B) \end{cases}$$

Appetizer

Let H be a maximal cyclic subgroup in \mathbb{Z}_n^2 generated by h, then

$$\widehat{1}_{H}(x) = \sum_{k=0}^{n-1} e^{2\pi i k \langle h, x \rangle / n} = \begin{cases} 0 & \text{if } \langle h, x \rangle \neq 0, \\ n & \text{if } \langle h, x \rangle = 0, \end{cases}$$

which means

$$Z\big(\widehat{1}_H\big)=\{x\in\mathbb{Z}_n^2:\langle h,x\rangle\neq 0\}.$$

Appetizer

Let H be a maximal cyclic subgroup in \mathbb{Z}_n^2 generated by h, then

$$\widehat{1}_{H}(x) = \sum_{k=0}^{n-1} e^{2\pi i k \langle h, x \rangle / n} = \begin{cases} 0 & \text{if } \langle h, x \rangle \neq 0, \\ n & \text{if } \langle h, x \rangle = 0, \end{cases}$$

which means

$$Z\big(\widehat{1}_H\big)=\{x\in\mathbb{Z}_n^2:\langle h,x\rangle\neq 0\}.$$

Orthogonal set:

$$A^{\perp} = \{x \in \mathbb{Z}_n^2 : \langle a, x \rangle = 0, \ \forall a \in A\}.$$

Poisson summation formula (maximal cyclic subgroups)

If H is a maximal cyclic subgroup, then

$$Z(\widehat{1}_H)=\mathbb{Z}_n^2 \setminus H^\perp$$

More precisely

$$\widehat{1}_H = |H| \cdot 1_{H^{\perp}}$$

Poisson summation formula (maximal cyclic subgroups)

If H is a maximal cyclic subgroup, then

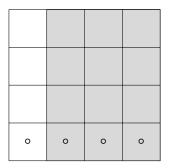
$$Z(\widehat{1}_H)=\mathbb{Z}_n^2 \setminus H^\perp$$

More precisely

$$\widehat{1}_H = |H| \cdot 1_{H^{\perp}}$$

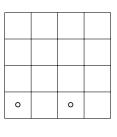
Spoiler: This actually holds for all subgroups.

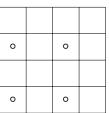
Examples

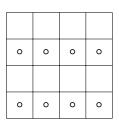


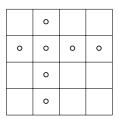
			0
		0	
	0		
0			

How about such sets?









Basic observation

Given some A, let's consider whether x = (k,0) is in $Z(\widehat{1}_A)$:

$$\widehat{1}_{A}(x) = \sum_{(a_{1}, a_{2}) \in A} e^{2\pi i (a_{1} \cdot k + a_{2} \cdot 0)/n} = \sum_{(a_{1}, a_{2}) \in A} e^{2\pi i a_{1} \cdot k/n}$$

Basic observation

Given some A, let's consider whether x = (k,0) is in $Z(\widehat{1}_A)$:

$$\widehat{1}_{A}(x) = \sum_{(a_{1}, a_{2}) \in A} e^{2\pi i (a_{1} \cdot k + a_{2} \cdot 0)/n} = \sum_{(a_{1}, a_{2}) \in A} e^{2\pi i a_{1} \cdot k/n}$$

(1) If A_1 is the multiset obtained by applying $(a_1, a_2) \mapsto (a_1, 0)$ on A, then $\widehat{1}_A(x) = \widehat{1}_{A_1}(x)$ for x = (k, 0).

Basic observation

Given some A, let's consider whether x = (k,0) is in $Z(\widehat{1}_A)$:

$$\widehat{1}_{A}(x) = \sum_{(a_{1}, a_{2}) \in A} e^{2\pi i (a_{1} \cdot k + a_{2} \cdot 0)/n} = \sum_{(a_{1}, a_{2}) \in A} e^{2\pi i a_{1} \cdot k/n}$$

- (1) If A_1 is the multiset obtained by applying $(a_1, a_2) \mapsto (a_1, 0)$ on A, then $\widehat{1}_A(x) = \widehat{1}_{A_1}(x)$ for x = (k, 0).
- (2) We may view $\sum_{(a_1,a_2)\in A} e^{2\pi i a_1 \cdot k/n}$ as the univariate polynomial

$$p(z) = \sum_{(a_1,a_2)\in A} z^{a_1}$$

evaluated at $z = e^{2\pi i k/n}$

The idea

Given some A and x, to determine whether $x \in Z(\widehat{1}_A)$, we find some x', y' so that $x \in \langle x' \rangle$, $x' \perp y'$, and x', y' generates \mathbb{Z}_n^2 .

The idea

Given some A and x, to determine whether $x \in Z(\widehat{1}_A)$, we find some x', y' so that $x \in \langle x' \rangle$, $x' \perp y'$, and x', y' generates \mathbb{Z}_n^2 .

x', y' is a pair of "orthogonal Euclidean basis", and if $x' = (x_1, x_2)$, then $y' = (-x_2, x_1)$.

The idea

Given some A and x, to determine whether $x \in Z(\widehat{1}_A)$, we find some x', y' so that $x \in \langle x' \rangle$, $x' \perp y'$, and x', y' generates \mathbb{Z}_n^2 .

x', y' is a pair of "orthogonal Euclidean basis", and if $x' = (x_1, x_2)$, then $y' = (-x_2, x_1)$.

Write every element $a \in A$ into linear combinations of x', y', then repeating the same procedure we obtain

- (1) $\widehat{1}_A(x)$ depends only on the projection of A into $\langle x' \rangle$;
- (2) $\widehat{1}_A(x)$ can be viewed as a univariate polynomial evaluated at $z = e^{2\pi i k/n}$ where k is the value so that x = kx'.

Facts: disjointness of difference sets

Fact 1:

$$A+B=A\oplus B\quad\Leftrightarrow\quad \Delta A\cap \Delta B=\emptyset$$

Facts: disjointness of difference sets

Fact 1:

$$A + B = A \oplus B \Leftrightarrow \Delta A \cap \Delta B = \emptyset$$

Define an equivalence relation in finite Abelian groups: $h \sim h'$ if h, h' generate the same cyclic subgroup.

Fact 2: Let E be an arbitrary equivalence class under \sim , then $\Delta A \cap E$ and $\Delta B \cap E$ can not be both non-empty.

Facts: disjointness of difference sets

Fact 1:

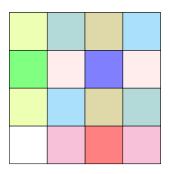
$$A + B = A \oplus B \Leftrightarrow \Delta A \cap \Delta B = \emptyset$$

Define an equivalence relation in finite Abelian groups: $h \sim h'$ if h, h' generate the same cyclic subgroup.

Fact 2: Let E be an arbitrary equivalence class under \sim , then $\Delta A \cap E$ and $\Delta B \cap E$ can not be both non-empty.

Reason(dilation trick): If gcd(m, |A|) = 1 and (A, B) is a tiling pair, then (mA, B) is still a tiling pair.

Equivalence classes



Facts: a representation of \mathbb{Z}_{p^k}

Expand every element of \mathbb{Z}_{p^k} in base p, then each element can be represented by a k-digit base p number.

Fact: Subgroups have common trailing 0s:

A subgroup of size p^t consists of all numbers whose last k-t digits are 0, and its generators are of the form:

$$d_1 \dots d_{t-1} \times \underbrace{0 \dots 0}_{k-t \text{ digits}},$$

with $x \neq 0$ and $d_1, ..., d_{t-1}$ arbitrary.

Quick facts and notations

Let

$$C' = \{\underbrace{0 \dots 0}_{t-1 \text{ digits}} \times \underbrace{0 \dots 0}_{k-t \text{ digits}} : x \in \mathbb{Z}_p\},$$

then |C'| = p, and both $C', \Delta C'$ belong to the same equivalence class.

Quick facts and notations

Let

$$C' = \{\underbrace{0 \dots 0}_{t-1 \text{ digits}} \times \underbrace{0 \dots 0}_{k-t \text{ digits}} : x \in \mathbb{Z}_p\},$$

then |C'| = p, and both $C', \Delta C'$ belong to the same equivalence class.

Let E be an equivalence class in $\mathbb{Z}_{p^k}^2$, and $h \in E$.

E generates a cyclic group of some prime power order, hence if

$$E' = \{0, h, ..., (p-1)h\},\$$

then |E'| = p, and both $E', \Delta E' \subseteq E$.

Quick facts

All elements in a given equivalence class are simultaneously annihilated.

Quick facts

All elements in a given equivalence class are simultaneously annihilated.

Each equivalence class E contains an size p subset E' whose difference set is still in the class.

We will construct sets of form $E'_1 \oplus E'_2 \oplus \ldots \oplus E'_m$ as spectra for tilings sets or tiling complements for spectral sets in $\mathbb{Z}_{p^k}^2$.

Lemma

If $h \in Z(\widehat{1}_A)$, then $\widehat{1}_A$ annihilates the whole equivalence class of h.

Lemma

If $h \in Z(\widehat{1}_A)$, then $\widehat{1}_A$ annihilates the whole equivalence class of h.

Lemma

If $h \in Z(\widehat{1}_A)$ and $ord(h) = p^k$, then p divides |A|.

Lemma

If $h \in Z(\widehat{1}_A)$, then $\widehat{1}_A$ annihilates the whole equivalence class of h.

Lemma

If $h \in Z(\widehat{1}_A)$ and $ord(h) = p^k$, then p divides |A|.

Proposition

If $A \subset \mathbb{Z}_{p^k}^2$ is a tiling set with |A| = p or p^{2k-1} , then A is spectral.

Lemma

If $h \in Z(\widehat{1}_A)$, then $\widehat{1}_A$ annihilates the whole equivalence class of h.

Lemma

If $h \in Z(\widehat{1}_A)$ and $ord(h) = p^k$, then p divides |A|.

Proposition

If $A \subset \mathbb{Z}_{p^k}^2$ is a tiling set with |A| = p or p^{2k-1} , then A is spectral.

Proposition

If $A \subset \mathbb{Z}_{p^k}^2$ is a spectral set with $|A| \ge p^{2k-1}$, then A is tiling.

Lemma

If $h \in Z(\widehat{1}_A)$, then $\widehat{1}_A$ annihilates the whole equivalence class of h.

Lemma

If $h \in Z(\widehat{1}_A)$ and $ord(h) = p^k$, then p divides |A|.

Proposition

If $A \subset \mathbb{Z}_{p^k}^2$ is a tiling set with |A| = p or p^{2k-1} , then A is spectral.

Proposition

If $A \subset \mathbb{Z}_{p^k}^2$ is a spectral set with $|A| \ge p^{2k-1}$, then A is tiling.

Theorem

Tiling sets and spectral sets coincide in \mathbb{Z}_p^2 .

$$T \Rightarrow S: |A| = p \text{ in } \mathbb{Z}_{p^k}^2$$

Let (A, B) be a tiling pair in $\mathbb{Z}_{p^k}^2$ with |A| = p.

 $Z(\widehat{1}_A) \neq \emptyset$ must hold, otherwise $Z(\widehat{1}_B)$ would contain the whole $\Delta \mathbb{Z}^2_{p^k}$.

There is some equivalence class E with $E \subseteq Z(\widehat{1}_A)$, and E' is a spectrum of A.

$$S \Rightarrow T : |A| \ge p^{2k-1} \text{ in } \mathbb{Z}_{p^k}^2$$

Let (A, S) be a spectral pair in $\mathbb{Z}_{p^k}^2$ with $|A| \ge p^{2k-1}$.

There must be some equivalence class E that is disjoint with ΔA , otherwise $Z(\widehat{1}_S)$ would contain the whole $\Delta \mathbb{Z}_{p^k}^2$.

 $\Delta E' \cap \Delta A \subseteq E \cap \Delta A = \emptyset$, thus E' is a tiling complement of A.

Tiling:
$$|A| = p^{2k-1}$$
 in $\mathbb{Z}_{p^k}^2$

Let (A, B) be a tiling pair in $\mathbb{Z}_{p^k}^2$ with $|A| = p^{2k-1}$.

There must be some equivalence class E that is disjoint with ΔA , otherwise there is no place for ΔB .

There is an
$$S$$
 with $|S| = p^{2k-1}$ and $Z(\widehat{1}_S) = \Delta \mathbb{Z}_{p^k}^2 \setminus E$.

S is essentially of form $H^{\perp} \oplus X'$, where H is a maximal cyclic subgroup that contains E, while X is the equivalence class of the subgroup of order |H|/|E| in H. (that S takes such a form will be more evident in the symplectic setting)

Symplectic form (anti-symmetric, bilinear):

$$\langle x, y \rangle_s = x_1 y_2 - x_2 y_1 = \langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \rangle,$$

where
$$x = (x_1, x_2), y = (y_1, y_2).$$

Symplectic form (anti-symmetric, bilinear):

$$\langle x,y\rangle_s=x_1y_2-x_2y_1=\langle \begin{pmatrix} x_1\\x_2\end{pmatrix},\begin{pmatrix} 0&1\\-1&0\end{pmatrix}\begin{pmatrix} y_1\\y_2\end{pmatrix}\rangle,$$

where
$$x = (x_1, x_2), y = (y_1, y_2).$$

Symplectic Fourier transform:

$$\widehat{1}_{A}^{s}(x) = \sum_{a \in A} e^{2\pi i \langle a, x \rangle_{s}/n}, \quad A \subseteq \mathbb{Z}_{n}^{2}$$

Symplectic form (anti-symmetric, bilinear):

$$\langle x, y \rangle_s = x_1 y_2 - x_2 y_1 = \langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \rangle,$$

where $x = (x_1, x_2), y = (y_1, y_2).$

Symplectic Fourier transform:

$$\widehat{1}_{A}^{s}(x) = \sum_{a \in A} e^{2\pi i \langle a, x \rangle_{s}/n}, \quad A \subseteq \mathbb{Z}_{n}^{2}$$

 $Z(\widehat{1}_A^s)$ is the 90 degree rotation (a bijection) of $Z(\widehat{1}_A)$.

Symplectic form (anti-symmetric, bilinear):

$$\langle x, y \rangle_s = x_1 y_2 - x_2 y_1 = \langle \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \rangle,$$

where
$$x = (x_1, x_2), y = (y_1, y_2).$$

Symplectic Fourier transform:

$$\widehat{1}_{A}^{s}(x) = \sum_{a \in A} e^{2\pi i \langle a, x \rangle_{s}/n}, \quad A \subseteq \mathbb{Z}_{n}^{2}$$

 $Z(\widehat{1}_A^s)$ is the 90 degree rotation (a bijection) of $Z(\widehat{1}_A)$.

Remark: The Fourier transform incurs a 90 degree rotation on the time-frequency plane, the rotation matrix is the symplectic matrix.

Appetizer revisited

Let H be a cyclic subgroup in \mathbb{Z}_n^2 generated by h, then

$$\widehat{1}_{H}^{s}(x) = \sum_{k=0}^{n-1} e^{2\pi i k \langle h, x \rangle_{s}/n} = \begin{cases} 0 & \text{if } \langle h, x \rangle_{s} \neq 0, \\ n & \text{if } \langle h, x \rangle_{s} = 0, \end{cases}$$

thus

$$Z(\widehat{1}_H^s) = \{ x \in \mathbb{Z}_n^2 : \langle h, x \rangle_s \neq 0 \}.$$

Appetizer revisited

Let H be a cyclic subgroup in \mathbb{Z}_n^2 generated by h, then

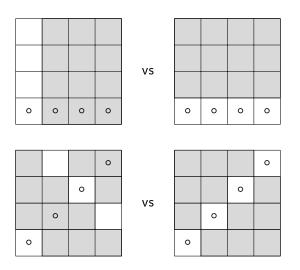
$$\widehat{1}_{H}^{s}(x) = \sum_{k=0}^{n-1} e^{2\pi i k \langle h, x \rangle_{s}/n} = \begin{cases} 0 & \text{if } \langle h, x \rangle_{s} \neq 0, \\ n & \text{if } \langle h, x \rangle_{s} = 0, \end{cases}$$

thus

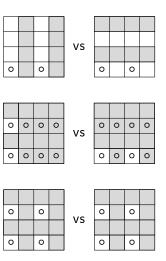
$$Z(\widehat{1}_H^s) = \{x \in \mathbb{Z}_n^2 : \langle h, x \rangle_s \neq 0\}.$$

Symplectic orthogonal sets:

$$H^{\perp_s}=\{x\in\mathbb{Z}_n^2:\langle h,x\rangle_s=0\}.$$



More examples



Characterizing orthogonal sets

 A^{\perp} and A^{\perp_s} are always subgroups. If ab=n, then

$$(a\mathbb{Z}_b \times \mathbb{Z}_n)^{\perp} = b\mathbb{Z}_a \times \{0\}, \quad (a\mathbb{Z}_b \times \mathbb{Z}_n)^{\perp_s} = \{0\} \times b\mathbb{Z}_a.$$

Characterizing orthogonal sets

 A^{\perp} and $A^{\perp s}$ are always subgroups. If ab = n, then

$$(a\mathbb{Z}_b \times \mathbb{Z}_n)^{\perp} = b\mathbb{Z}_a \times \{0\}, \quad (a\mathbb{Z}_b \times \mathbb{Z}_n)^{\perp_s} = \{0\} \times b\mathbb{Z}_a.$$

Fact 1: A set complements a subgroup H in \mathbb{Z}_n^2 if and only if its size is $n^2/|H|$ and it annihilates H^{\perp} (in the Euclidean setting) or H^{\perp_s} (in the symplectic setting).

Fact 2: *H* is an order *n* subgroup in \mathbb{Z}_n^2 if and only if $H = H^{\perp_s}$.

Fact 3: Poisson summation formula: If H is a subgroup, then

$$\widehat{1}_H^s = |H| \cdot 1_{H^{\perp_s}}$$

Strategy and motivation revisited

To determine whether $h \in Z(\widehat{1}_A)$ or $Z(\widehat{1}_A^s)$, first we view the group as generated by linear combinations of x', y', where $h \perp y'$ or $h \perp_s y'$.

Strategy and motivation revisited

To determine whether $h \in Z(\widehat{1}_A)$ or $Z(\widehat{1}_A^s)$, first we view the group as generated by linear combinations of x', y', where $h \perp y'$ or $h \perp_s y'$.

Next we project A to $\langle x' \rangle$, and view the result as a univariate polynomial evaluated at some point, the polynomial can then be factorized.

Strategy and motivation revisited

To determine whether $h \in Z(\widehat{1}_A)$ or $Z(\widehat{1}_A^s)$, first we view the group as generated by linear combinations of x', y', where $h \perp y'$ or $h \perp_s y'$.

Next we project A to $\langle x' \rangle$, and view the result as a univariate polynomial evaluated at some point, the polynomial can then be factorized.

Direct computation is often complicated, ideally we shall find a map that preserves $\langle \cdot, \cdot \rangle$ or $\langle \cdot, \cdot \rangle_s$ (preserves tilingness and spectrality), and can send orthogonal basis to standard basis.

The Euclidean case

Let us inspect whether this is possible for $\langle \cdot, \cdot \rangle$:

The Euclidean case

Let us inspect whether this is possible for $\langle \cdot, \cdot \rangle$:

Suppose x, y generate \mathbb{Z}_n^2 and $x \perp y$:

- (1) If $\langle Ua, Ub \rangle = \langle a, b \rangle$ holds for all a, b, then $UU^* = I$.
- (2) If $Ux = (1,0)^T$, $Uy = (0,1)^T$, then $U(x \ y) = I$, hence $U = \begin{pmatrix} x \\ y \end{pmatrix}^T$ and $x_1 \cdot x_1 + x_2 \cdot x_2 = y_1 \cdot y_1 + y_2 \cdot y_2 = 1$.

The Euclidean case

Let us inspect whether this is possible for $\langle \cdot, \cdot \rangle$:

Suppose x, y generate \mathbb{Z}_n^2 and $x \perp y$:

- (1) If $\langle Ua, Ub \rangle = \langle a, b \rangle$ holds for all a, b, then $UU^* = I$.
- (2) If $Ux = (1,0)^T$, $Uy = (0,1)^T$, then $U(x \ y) = I$, hence $U = \begin{pmatrix} x \\ y \end{pmatrix}^T$ and $x_1 \cdot x_1 + x_2 \cdot x_2 = y_1 \cdot y_1 + y_2 \cdot y_2 = 1$.

Conclusion: NOT always possible in \mathbb{Z}_n^2 .

No such U exists for orthogonal pairs from $\{(0,0),(1,1),(2,2),(3,3)\}$ and $\{(0,0),(1,3),(2,2),(3,1)\}$:

No such U exists for orthogonal pairs from $\{(0,0),(1,1),(2,2),(3,3)\}$ and $\{(0,0),(1,3),(2,2),(3,1)\}$:

$$1 \cdot 1 + 1 \cdot 1 = 3 \cdot 3 + 3 \cdot 3 = 1 \cdot 1 + 3 \cdot 3 = 2 \pmod{4}$$
.

No such U exists for orthogonal pairs from $\{(0,0),(1,1),(2,2),(3,3)\}$ and $\{(0,0),(1,3),(2,2),(3,1)\}$:

$$1 \cdot 1 + 1 \cdot 1 = 3 \cdot 3 + 3 \cdot 3 = 1 \cdot 1 + 3 \cdot 3 = 2 \pmod{4}$$
.

For $x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $y = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$, the candidate U should be $2^{-1} \begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix}$, but 2 is not multiplicatively invertible in \mathbb{Z}_4 .

Symplectic bases

Fact: If $\langle h, h' \rangle_s = d$ and $\gcd(d, n) = 1$, then h, h' generate \mathbb{Z}_n^2 .

Symplectic bases

Fact: If $\langle h, h' \rangle_s = d$ and $\gcd(d, n) = 1$, then h, h' generate \mathbb{Z}_n^2 .

If d = 1, then h, h' is a pair of symplectic basis.

Fact: Symplectic basis exists in any pair of generating maximal cyclic subgroups.

Symplectic bases

Fact: If $\langle h, h' \rangle_s = d$ and $\gcd(d, n) = 1$, then h, h' generate \mathbb{Z}_n^2 .

If d = 1, then h, h' is a pair of symplectic basis.

Fact: Symplectic basis exists in any pair of generating maximal cyclic subgroups.

Fact: Symplectic form is preserved on change of bases.

If
$$x = x_1h + x_2h'$$
, $y = y_1h + y_2h'$, then
$$\langle x, y \rangle_s = x_1y_1\langle h, h \rangle_s + x_1y_2\langle h, h' \rangle_s + x_2y_1\langle h', h \rangle_s + x_2y_2\langle h', h' \rangle_s$$
$$= x_1y_2 - x_2y_1$$

Symplectomorphisms

Symplectomorphism: change of symplectic bases

Fact: On \mathbb{Z}_n^2 they are 2×2 matrices with det = 1.

Symplectomorphisms

Symplectomorphism: change of symplectic bases

Fact: On \mathbb{Z}_n^2 they are 2×2 matrices with det = 1.

(1) Unit determinant matrices preserve the symplectic form:

If
$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
, then $\langle x, y \rangle_s = \langle x, Sy \rangle$, and $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ satisfies $A^*SA = S$ if and only if $ad - bc = 1$.

Symplectomorphisms

Symplectomorphism: change of symplectic bases

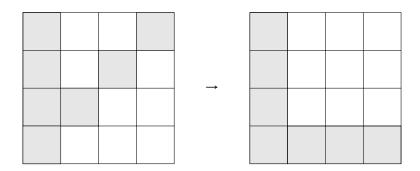
Fact: On \mathbb{Z}_n^2 they are 2×2 matrices with det = 1.

(1) Unit determinant matrices preserve the symplectic form:

If
$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
, then $\langle x, y \rangle_s = \langle x, Sy \rangle$, and $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ satisfies $A^*SA = S$ if and only if $ad - bc = 1$.

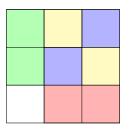
(2) Matrices formed by symplectic basis have unit determinant:

$$\langle x, y \rangle_s = x_1 y_2 - x_2 y_1 = \det \begin{pmatrix} x_1 & y_1 \\ x_2 & y_2 \end{pmatrix}$$



Any pair of generating maximal cyclic groups would work, they don't have to be orthogonal to each other in the Euclidean sense.

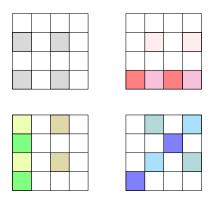
Structures of \mathbb{Z}_p^2



The group dissects into maximal cyclic subgroups that mutually intersect trivially.

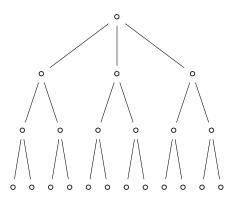
There are p+1 such subgroups, each subgroup forms a line.

Structures of $\mathbb{Z}_{p^2}^2$



For every order p cyclic subgroup H, there are precisely p maximal cyclic subgroups that intersect at H.

Structures of $\mathbb{Z}_{p^k}^2$



Each path from the root is a chain of cyclic subgroups by inclusion.

$$T \Rightarrow S \text{ in } \mathbb{Z}_{p^2}^2$$

Theorem

Tiling sets are also spectral in $\mathbb{Z}_{p^2}^2$.

$$T \Rightarrow S \text{ in } \mathbb{Z}_{p^2}^2$$

Theorem

Tiling sets are also spectral in $\mathbb{Z}_{p^2}^2$.

Suffices to consider tiling sets of size p^2 . Let (A, B) be such a pair.

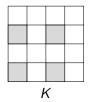
$$T \Rightarrow S \text{ in } \mathbb{Z}_{p^2}^2$$

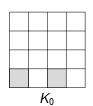
Theorem

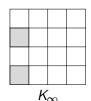
Tiling sets are also spectral in $\mathbb{Z}_{p^2}^2$.

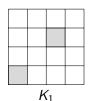
Suffices to consider tiling sets of size p^2 . Let (A, B) be such a pair.

Denote and distinguish order p subgroups by their "slopes":









$$T \Rightarrow S \text{ in } \mathbb{Z}_{p^2}^2$$

Let
$$M = \{i : \Delta K_i \subseteq Z(\widehat{1}_A^s)\}\$$
and $M' = \{i : \Delta K_i \cap Z(\widehat{1}_A^s) = \emptyset\}$

$$T \Rightarrow S \text{ in } \mathbb{Z}_{p^2}^2$$

Let
$$M = \{i : \Delta K_i \subseteq Z(\widehat{1}_A^s)\}$$
 and $M' = \{i : \Delta K_i \cap Z(\widehat{1}_A^s) = \emptyset\}$

(1) If
$$|M| = p + 1$$
, then $\Delta K \subseteq Z(\widehat{1}_A^s)$, and (A, K) is spectral.

$$T \Rightarrow S \text{ in } \mathbb{Z}_{p^2}^2$$

Let
$$M = \{i : \Delta K_i \subseteq Z(\widehat{1}_A^s)\}$$
 and $M' = \{i : \Delta K_i \cap Z(\widehat{1}_A^s) = \emptyset\}$

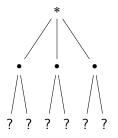
- (1) If |M| = p + 1, then $\Delta K \subseteq Z(\widehat{1}_A^s)$, and (A, K) is spectral.
- (2) If |M| = 0, then $\Delta K \subseteq Z(\widehat{1}_B^s)$, hence B complements K, which implies $\Delta B \cap Z(\widehat{1}_B^s) = \emptyset$. Therefore $\Delta B \subseteq Z(\widehat{1}_A^s)$, then (A,B) is spectral. (Mutual Annihilation)

$$T \Rightarrow S \text{ in } \mathbb{Z}_{p^2}^2$$

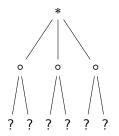
Let
$$M = \{i : \Delta K_i \subseteq Z(\widehat{1}_A^s)\}$$
 and $M' = \{i : \Delta K_i \cap Z(\widehat{1}_A^s) = \emptyset\}$

- (1) If |M| = p + 1, then $\Delta K \subseteq Z(\widehat{1}_A^s)$, and (A, K) is spectral.
- (2) If |M| = 0, then $\Delta K \subseteq Z(\widehat{1}_B^s)$, hence B complements K, which implies $\Delta B \cap Z(\widehat{1}_B^s) = \emptyset$. Therefore $\Delta B \subseteq Z(\widehat{1}_A^s)$, then (A,B) is spectral. (Mutual Annihilation)
- (3) If 0 < |M| < p + 1, then depending on the status of leaf nodes:
- (3.1) A annihilates a maximal path;
- (3.2) A annihilates a full sub-branch of some $m' \in M'$;
- (3.3) No other cases possible.

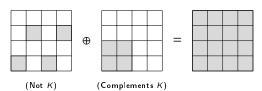
T2S case (1)



T2S case (2)



That B complementing K does not mean A is K, an example:



A counting lemma

Lemma

If $x \in Z(\widehat{1}_A^s)$, and ord(x) = p is a prime power, then

$$|A\cap \langle px\rangle^{\perp_s}|=p\cdot |A\cap \langle x\rangle^{\perp_s}|$$

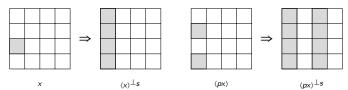
A counting lemma

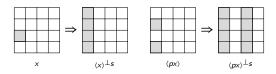
Lemma

If $x \in Z(\widehat{1}_A^s)$, and ord(x) = p is a prime power, then

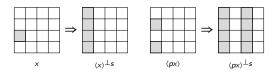
$$|A\cap \langle px\rangle^{\perp_s}|=p\cdot |A\cap \langle x\rangle^{\perp_s}|$$

For illustration purpose, let's say x = (0,1):





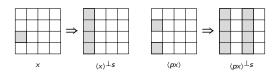
Let
$$\omega = e^{2\pi i/p^2}$$
, $P(z) = \sum_{(a_1,a_2)\in A} z^{a_1}$, then
$$\widehat{1}_A^s(x) = \sum_{(a_1,a_2)\in A} e^{2\pi i(a_1\cdot 1 - a_2\cdot 0)/p^2} = \sum_{(a_1,a_2)\in A} \omega^{a_1} = P(\omega).$$



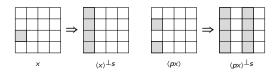
Let
$$\omega = e^{2\pi i/p^2}$$
, $P(z) = \sum_{(a_1, a_2) \in A} z^{a_1}$, then
$$\widehat{1}_A^s(x) = \sum_{(a_1, a_2) \in A} e^{2\pi i (a_1 \cdot 1 - a_2 \cdot 0)/p^2} = \sum_{(a_1, a_2) \in A} \omega^{a_1} = P(\omega).$$

If $x \in Z(\widehat{1}_A^s)$, then $P(\omega) = 0$, which means P(z) is divisible by the p^2 -th cyclotomic polynomial, hence

$$P(\omega) = (1 + \omega^p + ... + \omega^{p(p-1)})(c_0 + c_1\omega + ... + c_{p-1}\omega^{p-1}).$$

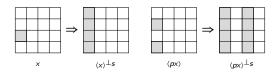


$$\begin{split} \widehat{1}_A^s(x) &= \sum_{a \in A} \omega^{\langle a, x \rangle_s} = \sum_{(a_1, a_2) \in A} \omega^{a_1} \\ &= (1 + \omega^p + \ldots + \omega^{p(p-1)}) (c_0 + c_1 \omega + \ldots + c_{p-1} \omega^{p-1}). \end{split}$$



$$\begin{split} \widehat{1}_A^s(x) &= \sum_{a \in A} \omega^{\langle a, x \rangle_s} = \sum_{(a_1, a_2) \in A} \omega^{a_1} \\ &= \big(1 + \omega^p + \ldots + \omega^{p(p-1)}\big) \big(c_0 + c_1 \omega + \ldots + c_{p-1} \omega^{p-1}\big). \end{split}$$

$$c_0 = |A \cap \langle x \rangle^{\perp_s}|$$



$$\begin{split} \widehat{1}_A^s(x) &= \sum_{a \in A} \omega^{\langle a, x \rangle_s} = \sum_{(a_1, a_2) \in A} \omega^{a_1} \\ &= \big(1 + \omega^p + \ldots + \omega^{p(p-1)}\big) \big(c_0 + c_1 \omega + \ldots + c_{p-1} \omega^{p-1}\big). \end{split}$$

$$c_0 = |A \cap \langle x \rangle^{\perp_s}|$$

 pc_0 =sum of coefficients in front of $1, \omega^p, \dots, \omega^{p(p-1)} = |A \cap \langle px \rangle^{\perp_s}|$

Lemma

If B complements K, then $\Delta B \cap Z(\widehat{1}_B^s) = \emptyset$.

Lemma

If B complements K, then $\Delta B \cap Z(\widehat{1}_B^s) = \emptyset$.

Suffices to show $B \cap Z(\widehat{1}_B^s) = \emptyset$, otherwise if $b - b' \in \Delta B \cap Z(\widehat{1}_B^s)$, then consider equivalently B - b'. Similarly $0 \in B$ can be assumed.

Lemma

If B complements K, then $\Delta B \cap Z(\widehat{1}_B^s) = \emptyset$.

Suffices to show $B \cap Z(\widehat{1}_B^s) = \emptyset$, otherwise if $b - b' \in \Delta B \cap Z(\widehat{1}_B^s)$, then consider equivalently B - b'. Similarly $0 \in B$ can be assumed.

Suppose $b \in B \cap Z(\widehat{1}_B^s)$, then $|B \cap \langle b \rangle| \ge 2$, hence $|B \cap \langle bp \rangle^{\perp_s}| \ge 2p$.

Lemma

If B complements K, then $\Delta B \cap Z(\widehat{1}_B^s) = \emptyset$.

Suffices to show $B \cap Z(\widehat{1}_B^s) = \emptyset$, otherwise if $b - b' \in \Delta B \cap Z(\widehat{1}_B^s)$, then consider equivalently B - b'. Similarly $0 \in B$ can be assumed.

Suppose $b \in B \cap Z(\widehat{1}_{B}^{s})$, then $|B \cap \langle b \rangle| \ge 2$, hence $|B \cap \langle bp \rangle^{\perp_{s}}| \ge 2p$.

Fact: B complements $K \Rightarrow \operatorname{ord}(b) = p^2 \Rightarrow |B \cap \langle bp \rangle^{\perp_s}| = p$.

Lemma

If B complements K, then $\Delta B \cap Z(\widehat{1}_B^s) = \emptyset$.

Suffices to show $B \cap Z(\widehat{1}_B^s) = \emptyset$, otherwise if $b - b' \in \Delta B \cap Z(\widehat{1}_B^s)$, then consider equivalently B - b'. Similarly $0 \in B$ can be assumed.

Suppose $b \in B \cap Z(\widehat{1}_B^s)$, then $|B \cap \langle b \rangle| \ge 2$, hence $|B \cap \langle bp \rangle^{\perp_s}| \ge 2p$.

Fact: B complements $K \Rightarrow \operatorname{ord}(b) = p^2 \Rightarrow |B \cap \langle bp \rangle^{\perp_s}| = p$.

W.L.O.G., take b=(0,1), then $\langle bp \rangle^{\perp_s}=\{(u,v):u \bmod p=0\}$, $B=\{\kappa_{x,y}+(x,y)\}$ with $\kappa_{x,y}\in K$ and x,y ranging from 0 to p-1.

Lemma

If B complements K, then $\Delta B \cap Z(\widehat{1}_B^s) = \emptyset$.

Suffices to show $B \cap Z(\widehat{1}_B^s) = \emptyset$, otherwise if $b - b' \in \Delta B \cap Z(\widehat{1}_B^s)$, then consider equivalently B - b'. Similarly $0 \in B$ can be assumed.

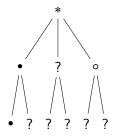
Suppose $b \in B \cap Z(\widehat{1}_B^s)$, then $|B \cap \langle b \rangle| \ge 2$, hence $|B \cap \langle bp \rangle^{\perp_s}| \ge 2p$.

Fact: B complements $K \Rightarrow \operatorname{ord}(b) = p^2 \Rightarrow |B \cap \langle bp \rangle^{\perp_s}| = p$.

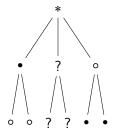
W.L.O.G., take b=(0,1), then $\langle bp \rangle^{\perp_s}=\{(u,v):u \bmod p=0\}$, $B=\{\kappa_{x,y}+(x,y)\}$ with $\kappa_{x,y}\in K$ and x,y ranging from 0 to p-1.

$$|B \cap \langle bp \rangle^{\perp_s}| = |\{\kappa_{0,y} + (0,y)\}| = p.$$

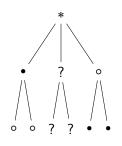
T2S case (3.1)



T2S case (3.2)



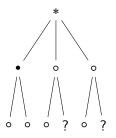
T2S case (3.2)



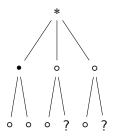
 $S = \{(0,0),(0,1)\} \oplus \{(0,0),(2,0)\}$

 $\Delta S = \Delta E' \oplus \Delta K_0$

T2S case (3.3)

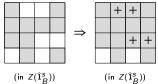


T2S case (3.3)



B has to annihilate the white nodes, which implies that

B annihilates $\mathbb{Z}_{p^2} \setminus K$ and all ΔK_i for i in M', it has too many zeros!



Fact: A set can not annihilate (the difference of) a larger subgroup.

Fact: A set can not annihilate (the difference of) a larger subgroup.

Suppose $\Delta H \subseteq Z(\widehat{1}_A^s)$ where H is a subgroup and |H| > |A|.

Fact: A set can not annihilate (the difference of) a larger subgroup.

Suppose $\Delta H \subseteq Z(\widehat{1}_A^s)$ where H is a subgroup and |H| > |A|.

Then
$$\Delta \mathbb{Z}_n^2 \subseteq Z(\widehat{1}_A^s \cdot \widehat{1}_{H^{\perp_s}}^s)$$
,

Fact: A set can not annihilate (the difference of) a larger subgroup.

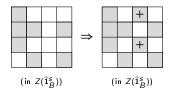
Suppose $\Delta H \subseteq Z(\widehat{1}_A^s)$ where H is a subgroup and |H| > |A|.

Then
$$\Delta \mathbb{Z}_n^2 \subseteq Z(\widehat{1}_A^s \cdot \widehat{1}_{H^{\perp_s}}^s)$$
,

which means $|A| \ge n^2/|H^{\perp_s}| = |H| > |A|$.



$$\Delta\big(\{0\}\times\mathbb{Z}_{p^2}\big)\subseteq Z\big(\widehat{1}_B^{\mathfrak s}\big) \text{ implies } B=\{\big(0,b_0\big),\ldots,\big(p^2-1,b_{p^2-1}\big)\}.$$



$$\Delta\big(\{0\}\times\mathbb{Z}_{p^2}\big)\subseteq Z\big(\widehat{1}_B^{\mathfrak s}\big) \text{ implies } B=\{\big(0,b_0\big),\ldots,\big(p^2-1,b_{p^2-1}\big)\}.$$

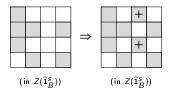
Set
$$B_m = \{(kp+m, b_{kp+m}) : k = 0, ..., p-1\}, u_m = \sum_{k=0}^{p-1} e^{2\pi i b_{kp+m}/p^2}.$$



$$\Delta\big(\{0\}\times\mathbb{Z}_{p^2}\big)\subseteq Z\big(\widehat{1}_B^{\mathfrak s}\big) \text{ implies } B=\{\big(0,b_0\big),\ldots,\big(p^2-1,b_{p^2-1}\big)\}.$$

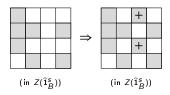
Set
$$B_m = \{(kp+m, b_{kp+m}) : k = 0, ..., p-1\}, \ u_m = \sum_{k=0}^{p-1} e^{2\pi i b_{kp+m}/p^2}.$$

$$K_0^{\perp} \setminus K \subseteq Z(\widehat{1}_B^s)$$
 implies $Fu = 0$. $F: p \times p$ Fourier matrix, $u = (u_0, ..., u_{p-1})^T$.



$$\begin{split} &\Delta(\{0\}\times\mathbb{Z}_{p^2})\subseteq Z(\widehat{1}_B^s) \text{ implies } B=\{(0,b_0),\ldots,(p^2-1,b_{p^2-1})\}.\\ &\text{Set } B_m=\{(kp+m,b_{kp+m}): k=0,\ldots,p-1\},\ u_m=\sum\limits_{k=0}^{p-1}e^{2\pi ib_{kp+m}/p^2}.\\ &K_0^\perp\setminus K\subseteq Z(\widehat{1}_B^s) \text{ implies } Fu=0.\ F: p\times p \text{ Fourier matrix, } u=(u_0,\ldots,u_{p-1})^T. \end{split}$$

Thus u = 0, consequently for each fixed m, $\{b_{kp+m}\}_{k=0}^{p-1} = \{kp\}_{k=0}^{p-1}$.



$$\Delta\big(\{0\}\times\mathbb{Z}_{p^2}\big)\subseteq Z\big(\widehat{1}_B^s\big) \text{ implies } B=\{\big(0,b_0\big),\ldots,\big(p^2-1,b_{p^2-1}\big)\}.$$

Set
$$B_m = \{(kp+m, b_{kp+m}) : k = 0, ..., p-1\}, \ u_m = \sum_{k=0}^{p-1} e^{2\pi i b_{kp+m}/p^2}.$$

$$K_0^\perp \setminus K \subseteq Z(\widehat{1}_B^s) \text{ implies } Fu = 0. \ \ F: p \times p \text{ Fourier matrix, } u = (u_0, ..., u_{p-1})^T.$$

Thus
$$u = 0$$
, consequently for each fixed m , $\{b_{kp+m}\}_{k=0}^{p-1} = \{kp\}_{k=0}^{p-1}$.

If
$$x = (p, 1)$$
, then $\widehat{1}_B^s(x) = \sum_{k=0}^{p^2-1} e^{2\pi i k/p^2} = 0$ (since $pb_{kp+m} = 0 \mod p^2$).

$$S \Rightarrow T \text{ in } \mathbb{Z}_{p^2}^2$$

Spectral sets are also tiling in $\mathbb{Z}_{p^2}^2$.

$$S \Rightarrow T \text{ in } \mathbb{Z}_{p^2}^2$$

Spectral sets are also tiling in $\mathbb{Z}_{p^2}^2$.

Let (A, S) be a spectral pair, both containing the identity.

$$S \Rightarrow T \text{ in } \mathbb{Z}_{p^2}^2$$

Spectral sets are also tiling in $\mathbb{Z}_{p^2}^2$.

Let (A, S) be a spectral pair, both containing the identity.

Suffices to consider $p^2 \le |A| < p^3$ and $p \le |A| < p^2$.

$$S \Rightarrow T \text{ in } \mathbb{Z}_{p^2}^2$$

Spectral sets are also tiling in $\mathbb{Z}_{p^2}^2$.

Let (A, S) be a spectral pair, both containing the identity.

Suffices to consider $p^2 \le |A| < p^3$ and $p \le |A| < p^2$.

The aim is to produce a B so that $\Delta A \cap \Delta B = \emptyset$, and $|B| = p^2$ or p^3 respectively.

$$S2T : p^2 \le |A| < p^3$$

(1) There is some B satisfying $\Delta A \cap \Delta B = \emptyset$, and B either is or complements an order p^2 subgroup.

$$S2T : p^2 \le |A| < p^3$$

- (1) There is some B satisfying $\Delta A \cap \Delta B = \emptyset$, and B either is or complements an order p^2 subgroup.
- (2) ΔA intersects each order p^2 subgroup (i.e., K and each maximal cyclic subgroup) non-trivially.

Consider $M = \{i : \Delta K_i \cap \Delta A \neq \emptyset\}$ and $M' = \{i : \Delta K_i \cap \Delta A = \emptyset\}$.

$$S2T : p^2 \le |A| < p^3$$

- (1) There is some B satisfying $\Delta A \cap \Delta B = \emptyset$, and B either is or complements an order p^2 subgroup.
- (2) ΔA intersects each order p^2 subgroup (i.e., K and each maximal cyclic subgroup) non-trivially.

Consider $M = \{i : \Delta K_i \cap \Delta A \neq \emptyset\}$ and $M' = \{i : \Delta K_i \cap \Delta A = \emptyset\}$.

If $m' \in M'$, and $H' = E \cup K_{m'}$ is a maximal cyclic subgroup, then $E \cap \Delta A \neq \emptyset$ (since $\Delta A \cap \Delta H$ has to be non-empty).

$$S2T: p^2 \le |A| < p^3$$

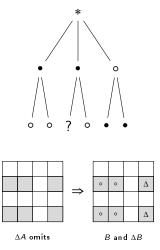
- (1) There is some B satisfying $\Delta A \cap \Delta B = \emptyset$, and B either is or complements an order p^2 subgroup.
- (2) ΔA intersects each order p^2 subgroup (i.e., K and each maximal cyclic subgroup) non-trivially.

Consider $M = \{i : \Delta K_i \cap \Delta A \neq \emptyset\}$ and $M' = \{i : \Delta K_i \cap \Delta A = \emptyset\}$.

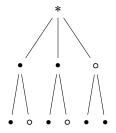
If $m' \in M'$, and $H' = E \cup K_{m'}$ is a maximal cyclic subgroup, then $E \cap \Delta A \neq \emptyset$ (since $\Delta A \cap \Delta H$ has to be non-empty).

- (2.1) |M'| > 0, $\exists m \in M$ with empty leaf: complements some $K_i \oplus E'$.
- (2.2) |M'| > 0, no branch of M has empty leaf: impossible.
- (2.3) |M'| = 0: S is a tiling complement of K, mutual annihilation.

$S2T: p^2 \le |A| < p^3 \text{ case } (2.1)$

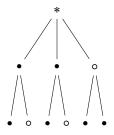


$S2T : p^2 \le |A| < p^3 \text{ case } (2.2)$



More complicated than the T2S (3.3) excessive zero case, since $|S| \ge p^2$ instead of $= p^2$.

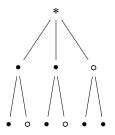
$S2T : p^2 \le |A| < p^3 \text{ case } (2.2)$



More complicated than the T2S (3.3) excessive zero case, since $|S| \ge p^2$ instead of $= p^2$.

On the other hand, $\widehat{1}_S^s$ has more zeros than in the setting of the excessive zero case.

$S2T : p^2 \le |A| < p^3 \text{ case } (2.2)$

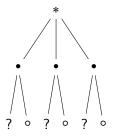


More complicated than the T2S (3.3) excessive zero case, since $|S| \ge p^2$ instead of $= p^2$.

On the other hand, $\widehat{1}_S^s$ has more zeros than in the setting of the excessive zero case.

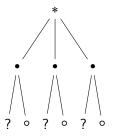
This puts more restrictions on it and leads to a contradiction by counting.

$S2T : p^2 \le |A| < p^3 \text{ case } (2.3)$



For each K_i , there shall be some maximal cyclic subgroup H_i so that $\Delta A \cap \Delta H_i \subseteq K_i$, otherwise $\Delta K_i^{\perp_s} \subseteq Z(\widehat{1}_S^s)$ (violates uncertainty).

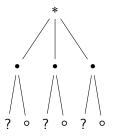
$S2T : p^2 \le |A| < p^3 \text{ case } (2.3)$



For each K_i , there shall be some maximal cyclic subgroup H_i so that $\Delta A \cap \Delta H_i \subseteq K_i$, otherwise $\Delta K_i^{\perp_s} \subseteq Z(\widehat{1}_S^s)$ (violates uncertainty).

If S falls into (2.1) or (2.2), then $|A| = |S| = p^2$, which leads to mutual annihilation.

$S2T : p^2 \le |A| < p^3 \text{ case } (2.3)$



For each K_i , there shall be some maximal cyclic subgroup H_i so that $\Delta A \cap \Delta H_i \subseteq K_i$, otherwise $\Delta K_i^{\perp_s} \subseteq Z(\widehat{1}_S^s)$ (violates uncertainty).

If S falls into (2.1) or (2.2), then $|A| = |S| = p^2$, which leads to mutual annihilation.

Otherwise both ΔA and ΔS comply with the above tree and will lead to a contradiction by counting as in (2.2).

$$S2T : p \le |A| < p^2$$

$$S2T: p \le |A| < p^2$$

M' is not empty, otherwise S annihilates K (subgroup of larger size).

$$S2T: p \le |A| < p^2$$

M' is not empty, otherwise S annihilates K (subgroup of larger size).

Similarly if $H = E \cup K_i$ is a maximal cyclic subgroup, then ΔA can not intersect both E and K_i .

$$S2T: p \le |A| < p^2$$

M' is not empty, otherwise S annihilates K (subgroup of larger size).

Similarly if $H = E \cup K_i$ is a maximal cyclic subgroup, then ΔA can not intersect both E and K_i .

The branch of every $m \in M$ must have empty leaf node.

$$S2T: p \le |A| < p^2$$

- (1) ΔA intersects each order p^2 subgroup non-trivially:
- \Rightarrow M is not empty (since $\triangle A$ needs to intersect K).
- ⇒ The branch of every $m' \in M'$ has full leaf.
- \Rightarrow S can tile along with some $E' \oplus K_i$.

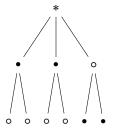
$$S2T: p \le |A| < p^2$$

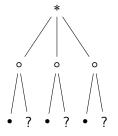
- (1) ΔA intersects each order p^2 subgroup non-trivially:
- \Rightarrow M is not empty (since $\triangle A$ needs to intersect K).
- \Rightarrow The branch of every $m' \in M'$ has full leaf.
- \Rightarrow S can tile along with some $E' \oplus K_i$.
- $(2) \Delta A \cap \Delta K = \emptyset.$
- (2.1) There is some E' such that $\Delta E' \cap \Delta(A \oplus K) = \emptyset$: $(A, K \oplus E)$ is a tiling pair.
- (2.2) No such E': impossible by the counting lemma.

$$S2T: p \le |A| < p^2$$

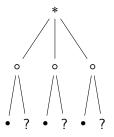
- (1) ΔA intersects each order p^2 subgroup non-trivially:
- \Rightarrow M is not empty (since $\triangle A$ needs to intersect K).
- \Rightarrow The branch of every $m' \in M'$ has full leaf.
- \Rightarrow S can tile along with some $E' \oplus K_i$.
- (2) $\Delta A \cap \Delta K = \emptyset$.
- (2.1) There is some E' such that $\Delta E' \cap \Delta(A \oplus K) = \emptyset$: $(A, K \oplus E)$ is a tiling pair.
- (2.2) No such E': impossible by the counting lemma.
- (3) $\Delta A \cap \Delta H = \emptyset$ for some maximal cyclic subgroup H.

Reduce to $\mathbb{Z}_{p^2} \times \mathbb{Z}_p$.





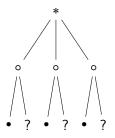
At least one leaf in each branch for $\Delta(A \oplus K)$ to intersect all $\Delta E'$.



At least one leaf in each branch for $\Delta(A \oplus K)$ to intersect all $\Delta E'$.

Apply counting lemma on S and each branch: $|S \cap K_i^{\perp_s}| = p|S \cap H_i|$.

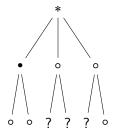
$$S2T : p \le |A| < p^2 \text{ case } (2)$$



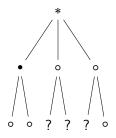
At least one leaf in each branch for $\Delta(A \oplus K)$ to intersect all $\Delta E'$.

Apply counting lemma on S and each branch: $|S \cap K_i^{\perp_s}| = p|S \cap H_i|$.

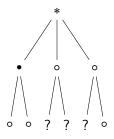
Sum over $i: |S| + p|S \cap K| = p^2 + p|S \cap K| + p|S \cap E_i| \Rightarrow |S| \ge p^2$.



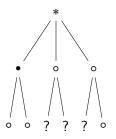
Let
$$a_i = |A \cap (K_i^{\perp_s} \setminus K)|, b = |A \cap K|, a'_i = |S \cap (K_i^{\perp_s} \setminus K)|, b' = |S \cap K|.$$



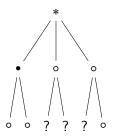
Let $a_i = |A \cap (K_i^{\perp_s} \setminus K)|, b = |A \cap K|, a_i' = |S \cap (K_i^{\perp_s} \setminus K)|, b' = |S \cap K|.$ Counting $\Rightarrow b, b'$



Let $a_i = |A \cap (K_i^{\perp_s} \setminus K)|, b = |A \cap K|, a_i' = |S \cap (K_i^{\perp_s} \setminus K)|, b' = |S \cap K|.$ Counting $\Rightarrow b, b'$ $Let <math>R = \{i : a_i \ne 0\}$, then $p|(a_i + b)$ (counting), and $|R| \le |M'| \le p.$



Let $a_i = |A \cap (K_i^{\perp_s} \setminus K)|, b = |A \cap K|, a_i' = |S \cap (K_i^{\perp_s} \setminus K)|, b' = |S \cap K|.$ Counting $\Rightarrow b, b' < p$ (otherwise $|A| \ge p^2$) $\Rightarrow a_i \ne 0 \Leftrightarrow a_i' \ne 0.$ Let $R = \{i : a_i \ne 0\}$, then $p|(a_i + b)$ (counting), and $|R| \le |M'| \le p.$ $(|R| - 1)b = (\sum_{i \in R} a_i + b) - |A|$ is divisible by p.



Let $a_i = |A \cap (K_i^{\perp_s} \setminus K)|, b = |A \cap K|, a_i' = |S \cap (K_i^{\perp_s} \setminus K)|, b' = |S \cap K|.$ Counting $\Rightarrow b, b' < p$ (otherwise $|A| \ge p^2$) $\Rightarrow a_i \ne 0 \Leftrightarrow a_i' \ne 0.$ Let $R = \{i : a_i \ne 0\}$, then $p|(a_i + b)$ (counting), and $|R| \le |M'| \le p.$ $(|R| - 1)b = (\sum_{i \in R} a_i + b) - |A|$ is divisible by p. $|R| = 1 \Rightarrow \text{reduce to } \mathbb{Z}_{p^2} \times \mathbb{Z}_p.$

To analyze the zero set of a given set, we project it onto maximal cyclic subgroups to reduce to univariate polynomials.

To analyze the zero set of a given set, we project it onto maximal cyclic subgroups to reduce to univariate polynomials.

This leads to immediate results for highest (both) / lowest (T2S only) order tiling/spectral sets in prime power cases.

To analyze the zero set of a given set, we project it onto maximal cyclic subgroups to reduce to univariate polynomials.

This leads to immediate results for highest (both) / lowest (T2S only) order tiling/spectral sets in prime power cases.

To facilitate further computations we need a better way of changing bases, and this shall be done in the symplectic setting.

To analyze the zero set of a given set, we project it onto maximal cyclic subgroups to reduce to univariate polynomials.

This leads to immediate results for highest (both) / lowest (T2S only) order tiling/spectral sets in prime power cases.

To facilitate further computations we need a better way of changing bases, and this shall be done in the symplectic setting.

Structures and results on $\mathbb{Z}_{p^2}^2$ are briefed by a case discussion along its tree structure.

