COMMON FUNDAMENTAL DOMAINS

Mihalis Kolountzakis

University of Crete

International Conference on Tiling and Fourier Bases Xidian University, Xi'an, China 16 September 2025

▶ Steinhaus (1950s): Are there $A, B \subseteq \mathbb{R}^2$ such that

$$|\tau A \cap B| = 1$$
, for every rigid motion τ ?

Are there two subsets of the plane which, no matter how moved, always intersect at exactly one point?

▶ Steinhaus (1950s): Are there $A, B \subseteq \mathbb{R}^2$ such that

$$|\tau A \cap B| = 1$$
, for every rigid motion τ ?

Are there two subsets of the plane which, no matter how moved, always intersect at exactly one point?

➤ Sierpiński, 1958:

Yes.

Equivalent:

$$\sum_{b\in B} \mathbf{1}_{
ho A}(x-b) = 1, \quad ext{for all rotations }
ho ext{ and for all } x \in \mathbb{R}^2.$$

Equivalent:

$$\sum_{b\in B} \mathbf{1}_{
ho A}(x-b) = 1, \quad ext{for all rotations }
ho ext{ and for all } x\in \mathbb{R}^2.$$

In tiling language:

$$ho A \oplus B = \mathbb{R}^2, \quad ext{for all rotations }
ho.$$

Every rotation of A tiles (partitions) the plane when translated at the locations B.

FIXING $B = \mathbb{Z}^2$: The Lattice Steinhaus question

▶ Can we have $\rho A \oplus \mathbb{Z}^2 = \mathbb{R}^2$ for all rotations ρ ?

• Equivalent: A is a fundamental domain of all $\rho \mathbb{Z}^2$. Or, A tiles the plane by translations at any $\rho \mathbb{Z}^2$.

► Major result: Jackson and Mauldin, 2002: Yes. But no measurability.

- ► Major result: Jackson and Mauldin, 2002: Yes. But no measurability.
- ► Can A be Lebesgue measurable? We interpret tiling almost everywhere.

- Maior result: Jackson and Mauldin. 2002: Yes. But no measurability.
- ► Can A be Lebesgue measurable? We interpret tiling almost everywhere.
- Results (in the negative direction) by Sierpiński (1958), Croft (1982), Beck (1989), Mallinikova & Rukshin (1995), K. (1996): "Best" so far: (K. & Wolff (1999))

If such a measurable A exists then it must be large at infinity:

$$\int_A |x|^{\frac{46}{27}+\epsilon} dx = \infty.$$

- ▶ Major result: Jackson and Mauldin, 2002: Yes. But no measurability.
- ► Can A be Lebesgue measurable? We interpret tiling almost everywhere.
- Results (in the negative direction) by
 Sierpiński (1958), Croft (1982), Beck (1989),
 Mallinikova & Rukshin (1995), K. (1996):
 "Best" so far: (K. & Wolff (1999))

If such a measurable A exists then it must be large at infinity:

$$\int_A |x|^{\frac{46}{27}+\epsilon} dx = \infty.$$

In higher dimension:

K. & Wolff (1999), K. & Papadimitrakis (2002): No measurable Steinhaus sets exist for \mathbb{Z}^d , $d \geq 3$. No Jackson - Mauldin analogue is known for d > 3.

THE ZEROS OF THE FOURIER TRANSFORM

► For A to have the Steinhaus property it is equivalent

that $\widehat{\mathbf{1}_A}$ must vanish on all circles through lattice points.

THE ZEROS OF THE FOURIER TRANSFORM

For A to have the Steinhaus property it is equivalent

that $\widehat{\mathbf{1}_A}$ must vanish on all circles through lattice points.

▶ Too many zeros imply strong decay of $\widehat{\mathbf{1}_A}$ near infinity.

This implies continuity, but $\mathbf{1}_A$ is an indicator function.

LATTICE STEINHAUS FOR FINITELY MANY LATTICES

▶ Given lattices $\Lambda_1, \ldots, \Lambda_n \subseteq \mathbb{R}^d$ all of volume 1 can we find measurable A which tiles with all Λ_j ?

LATTICE STEINHAUS FOR FINITELY MANY LATTICES

▶ Given lattices $\Lambda_1, \ldots, \Lambda_n \subseteq \mathbb{R}^d$ all of volume 1 can we find measurable A which tiles with all Λ_j ?

Generically yes!

If the sum $\Lambda_1^* + \cdots + \Lambda_n^*$ is direct then Kronecker-type density theorems allow us to rearrange a fundamental domain of one lattice to accommodate the others.

AN APPLICATION IN GABOR ANALYSIS

▶ If K, L are two lattices in \mathbb{R}^d with

$$\operatorname{vol} K \cdot \operatorname{vol} L = 1,$$

can we find $g \in L^2(\mathbb{R}^d)$, such that the (K, L) time-frequency translates

$$g(x-k)e^{2\pi i\ell \cdot x}, \quad (k \in K, \ell \in L)$$

form an orthogonal basis of $L^2(\mathbb{R}^d)$?

AN APPLICATION IN GABOR ANALYSIS

▶ If K, L are two lattices in \mathbb{R}^d with

$$\operatorname{vol} K \cdot \operatorname{vol} L = 1,$$

can we find $g \in L^2(\mathbb{R}^d)$, such that the (K, L) time-frequency translates

$$g(x-k)e^{2\pi i\ell \cdot x}, \quad (k \in K, \ell \in L)$$

form an orthogonal basis of $L^2(\mathbb{R}^d)$?

- Han and Wang (2000): Since $vol(L^*) = vol(K)$ let $g = \mathbf{1}_E$ where E is a **common tile** for K, L^* .
- ▶ L forms an orthogonal basis for any FD of L^* , so of $L^2(E+x)$ (for any x).
- \triangleright Space partitioned in K-translates of E and on each copy L is an orthogonal basis.

Multi-tiling functions

 \blacktriangleright A function f tiles with the set of translates \land if

$$\sum_{\lambda \in \Lambda} f(x - \lambda) = \text{const.} \quad \text{a.e. } x \in \mathbb{R}^d.$$

Multi-tiling functions

A function f tiles with the set of translates Λ if

$$\sum_{\lambda \in \Lambda} f(x - \lambda) = \text{const.} \quad \text{a.e. } x \in \mathbb{R}^d.$$

▶ We can find a common tiling function *f* for any set of lattices

$$\Lambda_1,\ldots,\Lambda_N\subseteq\mathbb{R}^d$$
.

Just take (the D_j are fundamental domains of Λ_j)

$$f=\mathbf{1}_{D_1}*\cdots*\mathbf{1}_{D_N}.$$

MULTI-TILING FUNCTIONS

 \blacktriangleright A function f tiles with the set of translates \land if

$$\sum_{\lambda \in \Lambda} f(x - \lambda) = \text{const.} \quad \text{a.e. } x \in \mathbb{R}^d.$$

▶ We can find a common tiling function *f* for any set of lattices

$$\Lambda_1,\ldots,\Lambda_N\subseteq\mathbb{R}^d$$
.

Just take (the D_j are fundamental domains of Λ_j)

$$f = \mathbf{1}_{D_1} * \cdots * \mathbf{1}_{D_N}.$$

▶ For such an f if $vol \Lambda_i \gtrsim 1$ then

diam supp
$$f \gtrsim N$$
.

Multi-tiling functions: Diameter lower bounds

lackbox (K. and Wolff, 1997): If $f\in L^1(\mathbb{R}^d)$, with $\int f \neq 0$, tiles \mathbb{R}^d with $\Lambda_1,\ldots,\Lambda_N$, and $\Lambda_i\cap\Lambda_j=\{0\}$ and $\operatorname{vol}\Lambda_j\sim 1$

then

diam supp
$$f \gtrsim N^{1/d}$$
.

Multi-tiling functions: Diameter Lower Bounds

lackbox (K. and Wolff, 1997): If $f \in L^1(\mathbb{R}^d)$, with $\int f \neq 0$, tiles \mathbb{R}^d with $\Lambda_1, \ldots, \Lambda_N$, and

$$\Lambda_i \cap \Lambda_j = \{0\}$$
 and $\operatorname{vol} \Lambda_j \sim 1$

then

diam supp
$$f \gtrsim N^{1/d}$$
.

QUESTION

What is the smallest $\operatorname{diam} \operatorname{supp} f$?

We know

$$N^{1/d} \leq \operatorname{diam} \operatorname{supp} f \leq N$$
.

at least when $\Lambda_i \cap \Lambda_i = \{0\}$.

Take $\alpha_1, \ldots, \alpha_N \in (\frac{1}{2}, 1)$ to be \mathbb{Q} -linearly independent and

$$\Lambda_j = \mathbb{Z}(\alpha_j, 0) + \mathbb{Z}(0, \alpha_j^{-1}), \quad \Lambda_j^* = \mathbb{Z}(\alpha_j^{-1}, 0) + \mathbb{Z}(0, \alpha_j).$$

Take $\alpha_1, \ldots, \alpha_N \in (\frac{1}{2}, 1)$ to be \mathbb{Q} -linearly independent and

$$\Lambda_j = \mathbb{Z}(\alpha_j, 0) + \mathbb{Z}(0, \alpha_j^{-1}), \quad \Lambda_j^* = \mathbb{Z}(\alpha_j^{-1}, 0) + \mathbb{Z}(0, \alpha_j).$$

f tiles with all $\Lambda_j \implies \widehat{f} \equiv 0$ on Λ_j^* .

 \widehat{f} has zeros of density $\gtrsim N$ along the axes. So

diam supp $f \gtrsim N$.

(K. & Papageorgiou, 2022)

Take $\alpha_1, \ldots, \alpha_N \in (\frac{1}{2}, 1)$ to be \mathbb{Q} -linearly independent and

$$\Lambda_j = \mathbb{Z}(\alpha_j, 0) + \mathbb{Z}(0, \alpha_j^{-1}), \quad \Lambda_j^* = \mathbb{Z}(\alpha_j^{-1}, 0) + \mathbb{Z}(0, \alpha_j).$$

f tiles with all $\Lambda_j \implies \widehat{f} \equiv 0$ on Λ_j^* .

 \widehat{f} has zeros of density $\gtrsim N$ along the axes. So

diam supp
$$f \gtrsim N$$
.

(K. & Papageorgiou, 2022)

Generic over \mathbb{Q} (no algebraic relations) but not geometrically generic (alignment).

QUESTION

Is there any case of "generic" lattices with a common tile f s.t.

diam supp
$$f = o(N)$$
?

Multi-tiling functions: the volume of the support

▶ If $f = \mathbf{1}_{D_1} * \cdots * \mathbf{1}_{D_N}$ or (more generally)

$$f = f_1 * \cdots * f_N$$
, where $f_j \ge 0$ tiles with Λ_j (1)

then

$$\operatorname{supp} f = \operatorname{supp} f_1 + \cdots + \operatorname{supp} f_N$$

and (Brunn - Minkowski inequality)

$$|\operatorname{supp} f| \ge \left(|\operatorname{supp} f_1|^{1/d} + \cdots + |\operatorname{supp} f_N|^{1/d} \right)^d \gtrsim N^d.$$

Multi-tiling functions: the volume of the support

▶ If $f = \mathbf{1}_{D_1} * \cdots * \mathbf{1}_{D_N}$ or (more generally)

$$f = f_1 * \cdots * f_N$$
, where $f_j \ge 0$ tiles with Λ_j (1)

then

$$\operatorname{supp} f = \operatorname{supp} f_1 + \cdots + \operatorname{supp} f_N$$

and (Brunn - Minkowski inequality)

$$|\operatorname{supp} f| \ge \left(|\operatorname{supp} f_1|^{1/d} + \cdots + |\operatorname{supp} f_N|^{1/d} \right)^d \gtrsim N^d.$$

QUESTION

What if we drop nonnegativity from (1)?

What if f is any common tile of the Λ_j , not given by (1)?

Multi-tiling sets: Giving up measurability

▶ If $G_1, ..., G_N$ are subgroups of G it is always enough to find a common fundamental domain (a common tile) of the G_j in

$$G_1+\cdots+G_N$$
.

MULTI-TILING SETS: GIVING UP MEASURABILITY

- ▶ (K. 1997) If the lattices $\Lambda_1, \ldots, \Lambda_N$ in \mathbb{R}^d have
 - (a) the same volume and
 - (b) a *direct sum* then they have a <u>bounded</u> common fundamental domain.

Multi-tiling sets: Giving up measurability

- ▶ (K. 1997) If the lattices $\Lambda_1, \ldots, \Lambda_N$ in \mathbb{R}^d have
 - (a) the same volume and
 - (b) a *direct sum* then they have a <u>bounded</u> common fundamental domain.
- lacksquare A common FD for the lattices $\Lambda_i = \left\{\lambda_j^i\right\}_{j\in\mathbb{N}}$ in the group $\Lambda_1 + \cdots + \Lambda_N$ is

$$\left\{\sum_{i=2}^N (\lambda_j^1 - \lambda_j^i): \ j \in \mathbb{N}\right\}.$$

Multi-tiling sets: Giving up measurability

- ▶ (K. 1997) If the lattices $\Lambda_1, \ldots, \Lambda_N$ in \mathbb{R}^d have
 - (a) the same volume and
 - (b) a *direct sum* then they have a bounded common fundamental domain.
- lacksquare A common FD for the lattices $\Lambda_i = \left\{\lambda_j^i\right\}_{i\in\mathbb{N}}$ in the group $\Lambda_1 + \cdots + \Lambda_N$ is

$$\left\{\sum_{i=2}^N (\lambda_j^1 - \lambda_j^i): j \in \mathbb{N}\right\}.$$

▶ Hall's "marriage" theorem ⇒ a good lattice enumeration.

THEOREM

If $\operatorname{vol} \Lambda_i = \operatorname{vol} \Lambda_j$ then there is a bijection $f_{ij} : \Lambda_i \to \Lambda_j$ with

$$|x - f(x)|$$
 bounded.

EQUAL LATTICE DENSITY NECESSARY FOR BOUNDEDNESS

THEOREM (S. GREPSTAD, M.K. & M. SPYRIDAKIS (2025))

Assume that L, M are two-full rank lattices in \mathbb{R}^d , with

$$\mathrm{vol}(L)<\mathrm{vol}(M)$$

such that

$$L \cap M = \{0\}.$$

Furthermore assume that F is a common fundamental domain of L, M in \mathbb{R}^d . Then F is unbounded.

No measurability of the FD assumed.

Proof for d=1

- Assume $\Lambda_1 = \mathbb{Z}$ and $\Lambda_2 = \alpha \mathbb{Z}$, with $\alpha > 1$, irrational.
- ▶ If *F* is a bounded FD in $G = \Lambda_1 + \Lambda_2 = \{m + n\alpha : m, n \in \mathbb{Z}\}$:

$$F = m_i - n_i \alpha : i = 1, 2, \ldots \subseteq [-M, M].$$

Proof for d=1

- Assume $\Lambda_1 = \mathbb{Z}$ and $\Lambda_2 = \alpha \mathbb{Z}$, with $\alpha > 1$, irrational.
- ▶ If *F* is a bounded FD in $G = \Lambda_1 + \Lambda_2 = \{m + n\alpha : m, n \in \mathbb{Z}\}$:

$$F = m_i - n_i \alpha : i = 1, 2, \ldots \subseteq [-M, M].$$

All m_i , n_i must be unique and $\mathbb{Z} = \{m_i\} = \{n_i\}$. Renumbering: $F = \{m - n_m \alpha : m \in \mathbb{Z}\}$.

Proof for d=1

- Assume $\Lambda_1 = \mathbb{Z}$ and $\Lambda_2 = \alpha \mathbb{Z}$, with $\alpha > 1$, irrational.
- ▶ If *F* is a bounded FD in $G = \Lambda_1 + \Lambda_2 = \{m + n\alpha : m, n \in \mathbb{Z}\}$:

$$F = m_i - n_i \alpha : i = 1, 2, \ldots \subseteq [-M, M].$$

- All m_i , n_i must be unique and $\mathbb{Z} = \{m_i\} = \{n_i\}$. Renumbering: $F = \{m - n_m \alpha : m \in \mathbb{Z}\}$.
- ▶ Restricting $-R \le m \le R$ we get

$$|m-n_m\alpha|\leq M.$$

or

$$-\frac{R+M}{\alpha} \leq n_m \leq \frac{R+M}{\alpha}$$
.

 $\sim 2R$ values of m correspond to only $\sim \frac{2}{\alpha}R$ values of n_m Contradiction, as all n_m must be different (d=1): K. & Papageorgiou, 2022, $d \geq 2$: Grepstad, K. & Spyridakis, 2025).

LATTICE STEINHAUS FOR FINITELY MANY LATTICES

QUESTION

Is there a *measurable, bounded* common tile for $\Lambda_1, \ldots, \Lambda_N$?

LATTICE STEINHAUS FOR FINITELY MANY LATTICES

QUESTION

Is there a *measurable*, bounded common tile for $\Lambda_1, \ldots, \Lambda_N$?

THEOREM (S. GREPSTAD AND M.K. (2025))

If L, M are lattices in \mathbb{R}^d of the same volume then they possess a **bounded**, **measurable** common fundamental domain.

TILE WITH A LATTICE, PACK WITH ANOTHER

THEOREM (S. GREPSTAD, M.K. & M. SPYRIDAKIS (2025))

If L, M are lattices in \mathbb{R}^d with $\operatorname{vol} M > \operatorname{vol} L$ then there exists a bounded $E \subseteq \mathbb{R}^d$ such that E tiles with L and E packs with M.

TILE WITH A LATTICE, PACK WITH ANOTHER

THEOREM (S. GREPSTAD, M.K. & M. SPYRIDAKIS (2025))

If L, M are lattices in \mathbb{R}^d with $\operatorname{vol} M > \operatorname{vol} L$ then there exists a bounded $E \subseteq \mathbb{R}^d$ such that E tiles with L and E packs with M.

- Not reducible to common fundamental domains.
- Is actually much easier than the common fundamental domain: larger volume allows room to work.

TILING FINITE ABELIAN GROUPS WITH A FUNCTION

▶ G_1, G_2 subgroups of $G, f: G \to \mathbb{R}^{\geq 0}$ s.t.

$$\forall x \in G: \quad \sum_{g_1 \in G_1} f(x - g_1) = |G_1|, \quad \sum_{g_2 \in G_2} f(x - g_2) = |G_2|.$$

For example $f(x) \equiv 1$.

TILING FINITE ABELIAN GROUPS WITH A FUNCTION

▶ G_1 , G_2 subgroups of G, $f: G \to \mathbb{R}^{\geq 0}$ s.t.

$$\forall x \in G: \quad \sum_{g_1 \in G_1} f(x - g_1) = |G_1|, \quad \sum_{g_2 \in G_2} f(x - g_2) = |G_2|.$$

For example $f(x) \equiv 1$.

QUESTION

How small can $|\sup f|$ be?

Write

$$S_{G_1,G_2}^G = \min \{ | \sup f | : f * \mathbf{1}_{G_1} \equiv |G_1| \mathbf{1}_G, f * \mathbf{1}_{G_2} \equiv |G_2| \mathbf{1}_G \}.$$

▶ Always $S_{G_1,G_2}^G \ge \max\{[G:G_1],[G:G_2]\}.$

REDUCTION TO PRODUCT GROUPS

▶ If $\Gamma = G/(G_1 \cap G_2)$, $\Gamma_i = G_i/(G_1 \cap G_2)$ then

$$S_{G_1,G_2}^G = S_{\Gamma_1,\Gamma_2}^\Gamma. \tag{2}$$

▶ Can assume: $G = G_1 \times G_2$.

THE PROBLEM IN MATRIX FORM

Group structure irrelevant.

Find $m \times n$ matrix A with row sums equal to n, column sums equal to m.

Minimize the support. Call S(m, n) the minumum.

THE PROBLEM IN MATRIX FORM

Group structure irrelevant.

Find $m \times n$ matrix A with row sums equal to n, column sums equal to m.

- ▶ Minimize the support. Call S(m, n) the minumum.
- Statisticians call these copulas and use them a lot. A generalization of doubly stochastic matrices.

The case m divides n

ightharpoonup Smallest possible support, since we must have ≥ 1 element/column.

$$S(km, m) = km.$$

The general case: Loukaki, 2022, Etkind and Lev, 2022

THEOREM $S(m, n) = m + n - \gcd(m, n)$

Tiling \mathbb{R} with two lattices: A lower bound for the length

▶ Suppose $f: \mathbb{R} \to \mathbb{R}^{\geq 0}$ is measurable and tiles with both $\Lambda_1 = \mathbb{Z}$ and with $\Lambda_2 = \alpha \mathbb{Z}$, where $\alpha \in (0,1)$:

$$\sum_{n\in\mathbb{Z}} \mathit{f}(\mathsf{x}-\mathsf{n}) = 1, \quad \sum_{n\in\mathbb{Z}} \mathit{f}(\mathsf{x}-\mathsf{n}\alpha) = \frac{1}{\alpha}, \quad \text{for almost every } \mathsf{x} \in \mathbb{R}. \tag{3}$$

Tiling \mathbb{R} with two lattices: A lower bound for the length

▶ Suppose $f: \mathbb{R} \to \mathbb{R}^{\geq 0}$ is measurable and tiles with both $\Lambda_1 = \mathbb{Z}$ and with $\Lambda_2 = \alpha \mathbb{Z}$, where $\alpha \in (0,1)$:

$$\sum_{n\in\mathbb{Z}} f(x-n) = 1, \quad \sum_{n\in\mathbb{Z}} f(x-n\alpha) = \frac{1}{\alpha}, \text{ for almost every } x \in \mathbb{R}.$$
 (3)

Then

$$|\operatorname{supp} f| \ge \left\lceil \frac{1}{\alpha} \right\rceil \alpha \ge 2\alpha.$$
 (4)

(K. & Papageorgiou, 2022)

Tiling \mathbb{R} with two lattices: A lower bound for the length

▶ Suppose $f: \mathbb{R} \to \mathbb{R}^{\geq 0}$ is measurable and tiles with both $\Lambda_1 = \mathbb{Z}$ and with $\Lambda_2 = \alpha \mathbb{Z}$, where $\alpha \in (0,1)$:

$$\sum_{n \in \mathbb{Z}} f(x - n) = 1, \quad \sum_{n \in \mathbb{Z}} f(x - n\alpha) = \frac{1}{\alpha}, \text{ for almost every } x \in \mathbb{R}.$$
 (3)

Then

$$|\operatorname{supp} f| \ge \left\lceil \frac{1}{\alpha} \right\rceil \alpha \ge 2\alpha.$$
 (4)

(K. & Papageorgiou, 2022)

- ▶ When $\alpha = 1 \epsilon$: convolution $\mathbf{1}_{[0,1]} * \mathbf{1}_{[0,\alpha]}$ is almost optimal.
- ▶ When $\alpha = \frac{1}{2} + \epsilon$ there is a big gap $1 + 2\epsilon$ to $3/2 + \epsilon$.

QUESTION

What is the smallest possible length of supp f which tiles with \mathbb{Z} and $\alpha \mathbb{Z}$?

TILING \mathbb{R} WITH TWO LATTICES: ETKIND AND LEV, 2022

$$\sum_{k\in\mathbb{Z}} f(x-k\alpha) = p$$
, $\sum_{k\in\mathbb{Z}} f(x-k\beta) = q$. What about the measure of supp f ?

- $ightharpoonup \alpha/\beta \notin \mathbb{Q}$
 - ▶ For all $p, q \in \mathbb{C}$ there is measurable f with $|\text{supp } f| \leq \alpha + \beta$
 - ▶ If $p/q \notin \mathbb{Q}^+$ then for any f must have $|\text{supp } f| \ge \alpha + \beta$.
 - ▶ If $f \ge 0$ or $f \in L^1$ or f has bounded support then $p/q = \beta/\alpha$, $|suppf| \ge \alpha + \beta$.
 - ▶ If $p/q \in \mathbb{Q}^+$, $\gcd(p,q) = 1$ we can have

$$|\operatorname{supp} f| < \alpha + \beta - \min \left\{ \frac{\alpha}{q}, \frac{\beta}{p} \right\} + \epsilon$$

and must have

$$|\operatorname{supp} f| > \alpha + \beta - \min \left\{ \frac{\alpha}{q}, \frac{\beta}{p} \right\}$$

 $ightharpoonup lpha/eta\in\mathbb{Q}^+$ and simplifying to lpha=n, eta=m, with $\gcd(n,m)=1$.

Then p/q = m/n and the least possible |supp f| is n + m - 1.

3 SUBGROUPS IN A FINITE ABELIAN GROUP: AIVAZIDIS, LOUKAKI AND SAMBALE, 2023

▶ If $A_1, ..., A_t$ are *complemented* isomorphic subgroups of G and the smallest prime divisor of $|A_1|$ is $\geq t$ then they have a common complement in G.

 $A \subseteq G$ is *complemented* if some FD of A in G is a subgroup of G (called *complement* of A).

3 Subgroups in a finite abelian group: Aivazidis. Loukaki and Sambale. 2023

▶ If $A_1, ..., A_t$ are *complemented* isomorphic subgroups of G and the smallest prime divisor of $|A_1|$ is $\geq t$ then they have a common complement in G.

 $A \subseteq G$ is *complemented* if some FD of A in G is a subgroup of G (called *complement* of A).

▶ If $A, B, C \subseteq G$ are cyclic groups of same order then they have a commond FD in G if and only if the following does not hold:

|A| = |B| = |C| is even and the product of their 2-Sylow subgroups $A_2B_2C_2$ satisifies

$$A_2B_2C_2/I = A_2/I \times B_2/I = A_2/I \times C_2/I = B_2/I \times C_2/I$$

where $I = A_2 \cap B_2 \cap C_2$.

DIAMETER: LATTICES WITH MANY RELATIONS

▶ Main observation: $\Lambda_1, \ldots, \Lambda_N \supseteq \Lambda$ and D is a FD of Λ then

 $f = \mathbf{1}_D$ tiles with all Λ_i at level $[\Lambda_i : \Lambda]$.

DIAMETER: LATTICES WITH MANY RELATIONS

▶ Main observation: $\Lambda_1, \ldots, \Lambda_N \supseteq \Lambda$ and D is a FD of Λ then

$$f = \mathbf{1}_D$$
 tiles with all Λ_i at level $[\Lambda_i : \Lambda]$.

Let G be a subgroup of \mathbb{Z}_p^d . Define the lattice $\Lambda_G = (p\mathbb{Z})^d + G$, which contains $\Lambda = (p\mathbb{Z})^2$ with FD $[0,p)^d$ of diameter \sqrt{dp} .

▶ Restrict to cyclic subgroups G of \mathbb{Z}_p^d :

► There are

$$\frac{p^d-1}{p-1}\sim p^{d-1}=:N$$

different cyclic subgroups G of \mathbb{Z}_p^d .

► There are

$$\frac{p^d-1}{p-1}\sim p^{d-1}=:N$$

different cyclic subgroups G of \mathbb{Z}_p^d .

▶ We find $\operatorname{vol} \Lambda_G$ by its density

$$\operatorname{vol} \Lambda_G = \frac{\operatorname{vol} (p\mathbb{Z})^d}{|G|} = \frac{p^d}{p} = p^{d-1} = N.$$

► There are

$$\frac{p^d-1}{p-1}\sim p^{d-1}=:N$$

different cyclic subgroups G of \mathbb{Z}_p^d .

▶ We find $\operatorname{vol} \Lambda_G$ by its density

$$\operatorname{vol} \Lambda_G = \frac{\operatorname{vol} (p\mathbb{Z})^d}{|G|} = \frac{p^d}{p} = p^{d-1} = N.$$

▶ Shrink everything by $N^{-1/d}$ so that

$$\Lambda'_G = N^{-1/d} \Lambda_G$$

has volume 1.

▶ There are

$$\frac{p^d-1}{p-1}\sim p^{d-1}=:N$$

different cyclic subgroups G of \mathbb{Z}_p^d .

▶ We find $\operatorname{vol} \Lambda_G$ by its density

$$\operatorname{vol} \Lambda_G = \frac{\operatorname{vol} (p\mathbb{Z})^d}{|G|} = \frac{p^d}{p} = p^{d-1} = N.$$

 \triangleright Shrink everything by $N^{-1/d}$ so that

$$\Lambda'_G = N^{-1/d} \Lambda_G$$

has volume 1.

lacksquare $f(x):=\mathbf{1}_{[0,p)^d}(N^{1/d}x)=\mathbf{1}_{[0,N^{-1/d}p]^d}(x)$ is a common tile for the Λ_G' of diameter

$$\sqrt{d}p\cdot N^{-1/d} = \sqrt{d}N^{\frac{1}{d-1}}N^{-\frac{1}{d}} = \sqrt{d}\frac{N^{\frac{1}{d(d-1)}}}{N^{\frac{1}{d(d-1)}}} \quad \text{(much less than } N^{1/d}\text{)}.$$

(K. & Papageorgiou, 2022)

Unconditional lower bounds for the diameter?

QUESTION

Derive a lower bound, growing with N, for

 $\operatorname{diam}\operatorname{supp} f$

where

f tiles with $\Lambda_1, \ldots, \Lambda_N$

and $\operatorname{vol} \Lambda_j = 1$.

DIAMETER: THE CASE d = 1.

▶ Previous construction gives nothing in dimension d = 1.

THEOREM

We can find N lattices $\Lambda_j \subseteq \mathbb{R}$ of with $\operatorname{vol} \Lambda_j \sim 1$ and a function f with $\int f > 0$ and supported in an interval of length

$$\frac{N}{\log^{0.086\cdots}N}$$

which tiles with all Λ_j .

For any $\epsilon > 0$ any such function f must have

diam supp
$$f \gtrsim_{\epsilon} N^{1-\epsilon}$$
.

(K. & Papageorgiou, 2022)

Define

$$\Lambda_j = \lambda_j \mathbb{Z} = \frac{1}{N+j} \mathbb{Z}, \quad j = 1, 2, \dots, N.$$

Then

$$\Lambda_j^* = (N+j)\mathbb{Z},$$

with union $U = \bigcup_{j=1}^{N} (N+j)\mathbb{Z}$.

• f tiles with all $\Lambda_j \iff \hat{f}$ vanishes on $U \setminus \{0\}$.

Define

$$\Lambda_j = \lambda_j \mathbb{Z} = \frac{1}{N+j} \mathbb{Z}, \quad j = 1, 2, \dots, N.$$

Then

$$\Lambda_j^* = (N+j)\mathbb{Z},$$

with union $U = \bigcup_{j=1}^{N} (N+j)\mathbb{Z}$.

- f tiles with all $\Lambda_i \iff \widehat{f}$ vanishes on $U \setminus \{0\}$.
- ► *Erdős, 1935*: The integers divisible by one of $N+1, N+2, \ldots, 2N$ have density $\rightarrow 0$ as $N \rightarrow \infty$.

Define

$$\Lambda_j = \lambda_j \mathbb{Z} = \frac{1}{N+j} \mathbb{Z}, \quad j = 1, 2, \dots, N.$$

Then

$$\Lambda_j^* = (N+j)\mathbb{Z},$$

with union $U = \bigcup_{i=1}^{N} (N+j)\mathbb{Z}$.

- f tiles with all $\Lambda_i \iff \widehat{f}$ vanishes on $U \setminus \{0\}$.
- ► *Erdős, 1935*: The integers divisible by one of $N+1, N+2, \ldots, 2N$ have density $\rightarrow 0$ as $N \rightarrow \infty$.
- ► Tenenbaum, 1980: Their density is

$$O\left(\frac{1}{\log^{0.086\cdots}N}\right)$$
.

▶ So dens
$$U = O\left(\frac{1}{\log^{0.086\cdots} N}\right)$$
.

- ▶ So dens $U = O\left(\frac{1}{\log^{0.086\cdots} N}\right)$.
- **Beurling**: *U* separated, dens $U < \rho \implies$

$$\exists f \colon [-\rho, \rho] \to \mathbb{C} \text{ with } \widehat{f} \equiv 0 \text{ on } U, \ \int f = 1.$$

- $\blacktriangleright \text{ So dens } U = O\left(\frac{1}{\log^{0.086\cdots} N}\right).$
- ▶ Beurling: U separated, dens $U < \rho \implies$

$$\exists f \colon [-\rho, \rho] \to \mathbb{C} \text{ with } \widehat{f} \equiv 0 \text{ on } U, \ \int f = 1.$$

- ▶ With $\rho = O\left(\frac{1}{\log^{0.086\cdots}N}\right)$ we get a common tile f of support o(1).
- Scale up by a factor of N:

$$f'(x) = f(x/N), \quad \operatorname{diam \, supp} f' = o(N),$$

$$\Lambda'_j = N \Lambda_j = \frac{N}{N+j} \mathbb{Z} \text{ have vol } \sim 1.$$

DIAMETER: THE CASE d = 1: LOWER BOUNDS

▶ f tiles with $\Lambda_1, \ldots, \Lambda_N$, dens $\Lambda_j \sim 1$, \Longrightarrow

 \widehat{f} vanishes on $\Lambda_1^*, \ldots, \Lambda_N^*$.

DIAMETER: THE CASE d = 1: LOWER BOUNDS

▶ f tiles with $\Lambda_1, \ldots, \Lambda_N$, dens $\Lambda_i \sim 1$, \Longrightarrow

 \widehat{f} vanishes on $\Lambda_1^*, \ldots, \Lambda_N^*$.

▶ Gilboa and Pinchasi, 2014: The union of n arithmetic progressions of length n (of different steps ~ 1) contains, for any $\epsilon > 0$,

$$\gtrsim n^{2-\epsilon}$$
 points.

DIAMETER: THE CASE d = 1: LOWER BOUNDS

▶ f tiles with $\Lambda_1, \ldots, \Lambda_N$, dens $\Lambda_i \sim 1$, \Longrightarrow

$$\widehat{f}$$
 vanishes on $\Lambda_1^*, \ldots, \Lambda_N^*$.

▶ Gilboa and Pinchasi, 2014: The union of n arithmetic progressions of length n (of different steps ~ 1) contains, for any $\epsilon > 0$,

$$\gtrsim n^{2-\epsilon}$$
 points.

▶ Jensen's formula: Since \widehat{f} has $\gtrsim N^{2-\epsilon}$ roots in $[-N, N] \implies$ diam supp $f \gtrsim N^{1-\epsilon}$.

THE END

Thank you for your attention!